Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radioactive decay
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Chain of any number of decays===== For the general case of any number of consecutive decays in a decay chain, i.e. {{math|A<sub>1</sub> β A<sub>2</sub> Β·Β·Β· β A<sub>''i''</sub> Β·Β·Β· β A<sub>''D''</sub>}}, where {{math|''D''}} is the number of decays and {{math|''i''}} is a dummy index ({{math|''i'' {{=}} 1, 2, 3, ..., ''D''}}), each nuclide population can be found in terms of the previous population. In this case {{math|''N''<sub>2</sub> {{=}} 0}}, {{math|''N''<sub>3</sub> {{=}} 0}}, ..., {{math|''N<sub>D</sub>'' {{=}} 0}}. Using the above result in a recursive form: :<math> \frac{\mathrm{d}N_j}{\mathrm{d}t} = - \lambda_j N_j + \lambda_{j-1} N_{(j-1)0} e^{-\lambda_{j-1} t}. </math> The general solution to the recursive problem is given by '''Bateman's equations''':<ref name="general solution of Bateman">{{cite journal|last=Cetnar|first=Jerzy|title=General solution of Bateman equations for nuclear transmutations|journal=Annals of Nuclear Energy|date=May 2006|volume=33|issue=7|pages=640β645|doi=10.1016/j.anucene.2006.02.004|bibcode=2006AnNuE..33..640C }}</ref> {{Equation box 1 |indent=: |title='Bateman's equations' |equation=<math>\begin{align} N_D &= \frac{N_1(0)}{\lambda_D} \sum_{i=1}^D \lambda_i c_i e^{-\lambda_i t} \\[3pt] c_i &= \prod_{j=1, i\neq j}^D \frac{\lambda_j}{\lambda_j - \lambda_i} \end{align}</math> |cellpadding |border |border colour = #0073CF |background colour=#F5FFFA }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)