Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Hadamard product=== On the basis of [[Weierstrass factorization theorem|Weierstrass's factorization theorem]], [[Hadamard]] gave the [[infinite product]] expansion :<math>\zeta(s) = \frac{e^{\left(\log(2\pi)-1-\frac{\gamma}{2}\right)s}}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)} \prod_\rho \left(1 - \frac{s}{\rho} \right) e^\frac{s}{\rho},</math> where the product is over the non-trivial zeros {{mvar|ρ}} of {{math|''ζ''}} and the letter {{mvar|γ}} again denotes the [[Euler–Mascheroni constant]]. A simpler [[infinite product]] expansion is :<math>\zeta(s) = \pi^\frac{s}{2} \frac{\prod_\rho \left(1 - \frac{s}{\rho} \right)}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)}.</math> This form clearly displays the simple pole at {{math|''s'' {{=}} 1}}, the trivial zeros at −2, −4, ... due to the gamma function term in the denominator, and the non-trivial zeros at {{math|''s'' {{=}} ''ρ''}}. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the form {{mvar|ρ}} and {{math|1 − ''ρ''}} should be combined.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)