Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical harmonics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algebraic properties== === Addition theorem === A mathematical result of considerable interest and use is called the ''addition theorem'' for spherical harmonics. Given two vectors {{math|'''r'''}} and {{math|'''r′'''}}, with spherical coordinates <math>(r,\theta,\varphi)</math> and <math>(r, \theta ', \varphi ')</math>, respectively, the angle <math>\gamma</math> between them is given by the relation <math display="block">\cos\gamma = \cos\theta'\cos\theta + \sin\theta\sin\theta' \cos(\varphi-\varphi')</math> in which the role of the trigonometric functions appearing on the right-hand side is played by the spherical harmonics and that of the left-hand side is played by the [[Legendre polynomial]]s. The ''addition theorem'' states<ref>{{cite book|last1=Edmonds|first1=A. R.|title=Angular Momentum In Quantum Mechanics| year=1996 | url=https://archive.org/details/angularmomentumq00edmo|url-access=limited|publisher=Princeton University Press|page=[https://archive.org/details/angularmomentumq00edmo/page/n68 63]}}</ref> {{NumBlk||<math display="block"> P_\ell( \mathbf{x}\cdot\mathbf{y} ) = \frac{4\pi}{2\ell+1}\sum_{m=-\ell}^\ell Y_{\ell}^m(\mathbf{y}) \, Y_{\ell}^m{}^*(\mathbf{x}) \quad \forall \, \ell \in \N_0 \; \forall\, \mathbf{x}, \mathbf{y} \in \R^3 \colon \; \| \mathbf{x} \|_2 = \| \mathbf{y} \|_2 = 1 \,, </math>|{{EquationRef|1}}}} where {{math|''P''<sub>''ℓ''</sub>}} is the [[Legendre polynomial]] of degree {{mvar|ℓ}}. This expression is valid for both real and complex harmonics.<ref>This is valid for any orthonormal basis of spherical harmonics of degree {{mvar|ℓ}}. For unit power harmonics it is necessary to remove the factor of {{math|4''π''}}.</ref> The result can be proven analytically, using the properties of the [[Poisson kernel]] in the unit ball, or geometrically by applying a rotation to the vector '''y''' so that it points along the ''z''-axis, and then directly calculating the right-hand side.<ref>{{harvnb|Whittaker|Watson|1927|p=395}}</ref> In particular, when {{math|1='''x''' = '''y'''}}, this gives Unsöld's theorem<ref>{{harvnb|Unsöld|1927}}</ref> <math display="block">\sum_{m=-\ell}^\ell Y_{\ell}^m{}^*(\mathbf{x}) \, Y_{\ell}^m(\mathbf{x}) = \frac{2\ell + 1}{4\pi}</math> which generalizes the identity {{math|1=cos<sup>2</sup>''θ'' + sin<sup>2</sup>''θ'' = 1}} to two dimensions. In the expansion ({{EquationNote|1}}), the left-hand side <math>P_{\ell} (\mathbf{x} \cdot \mathbf{y})</math> is a constant multiple of the degree {{mvar|ℓ}} [[zonal spherical harmonic]]. From this perspective, one has the following generalization to higher dimensions. Let {{math|''Y''<sub>''j''</sub>}} be an arbitrary orthonormal basis of the space {{math|'''H'''<sub>''ℓ''</sub>}} of degree {{mvar|ℓ}} spherical harmonics on the {{mvar|n}}-sphere. Then <math>Z^{(\ell)}_{\mathbf{x}}</math>, the degree {{mvar|ℓ}} zonal harmonic corresponding to the unit vector {{mvar|x}}, decomposes as<ref>{{harvnb|Stein|Weiss|1971|loc=§IV.2}}</ref> {{NumBlk||<math display="block">Z^{(\ell)}_{\mathbf{x}}({\mathbf{y}}) = \sum_{j=1}^{\dim(\mathbf{H}_\ell)}\overline{Y_j({\mathbf{x}})}\,Y_j({\mathbf{y}})</math>|{{EquationRef|2}}}} Furthermore, the zonal harmonic <math>Z^{(\ell)}_{\mathbf{x}}({\mathbf{y}})</math> is given as a constant multiple of the appropriate [[Gegenbauer polynomial]]: {{NumBlk||<math display="block">Z^{(\ell)}_{\mathbf{x}}({\mathbf{y}}) = C_\ell^{((n-2)/2)}({\mathbf{x}}\cdot {\mathbf{y}})</math>|{{EquationRef|3}}}} Combining ({{EquationNote|2}}) and ({{EquationNote|3}}) gives ({{EquationNote|1}}) in dimension {{math|1=''n'' = 2}} when {{math|'''x'''}} and {{math|'''y'''}} are represented in spherical coordinates. Finally, evaluating at {{math|1='''x''' = '''y'''}} gives the functional identity <math display="block">\frac{\dim \mathbf{H}_\ell}{\omega_{n-1}} = \sum_{j=1}^{\dim(\mathbf{H}_\ell)}|Y_j({\mathbf{x}})|^2</math> where {{math|''ω''<sub>''n''−1</sub>}} is the volume of the (''n''−1)-sphere. === Contraction rule === Another useful identity expresses the product of two spherical harmonics as a sum over spherical harmonics<ref>{{cite book | last1=Brink|first1=D. M.|last2=Satchler|first2=G. R.|title=Angular Momentum|publisher=Oxford University Press|page=146}}</ref> <math display="block"> Y_a^{\alpha}\left(\theta,\varphi\right)Y_b^{\beta}\left(\theta,\varphi\right) = \sqrt{\frac{\left(2a+1\right) \left(2b+1\right)}{4\pi}}\sum_{c=0}^{\infty}\sum_{\gamma=-c}^{c}\left(-1\right)^{\gamma}\sqrt{2c+1}\begin{pmatrix} a & b & c\\ \alpha & \beta & -\gamma \end{pmatrix} \begin{pmatrix} a & b & c\\ 0 & 0 & 0 \end{pmatrix} Y_c^{\gamma}\left(\theta,\varphi\right). </math> Many of the terms in this sum are trivially zero. The values of <math> c </math> and <math>\gamma</math> that result in non-zero terms in this sum are determined by the selection rules for the [[3j-symbol]]s. === Clebsch–Gordan coefficients === {{Main|Clebsch–Gordan coefficients}} The Clebsch–Gordan coefficients are the coefficients appearing in the expansion of the product of two spherical harmonics in terms of spherical harmonics themselves. A variety of techniques are available for doing essentially the same calculation, including the Wigner [[3-jm symbol]], the [[Racah coefficients]], and the [[Slater integrals]]. Abstractly, the Clebsch–Gordan coefficients express the [[tensor product]] of two [[irreducible representation]]s of the [[rotation group SO(3)|rotation group]] as a sum of irreducible representations: suitably normalized, the coefficients are then the multiplicities.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)