Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Computer vision and optics=== The concept of a tensor of order two is often conflated with that of a matrix. Tensors of higher order do however capture ideas important in science and engineering, as has been shown successively in numerous areas as they develop. This happens, for instance, in the field of [[computer vision]], with the [[trifocal tensor]] generalizing the [[fundamental matrix (computer vision)|fundamental matrix]]. The field of [[nonlinear optics]] studies the changes to material [[Polarization density#Relation between P and E in various materials|polarization density]] under extreme electric fields. The polarization waves generated are related to the generating [[electric field]]s through the nonlinear susceptibility tensor. If the polarization '''P''' is not linearly proportional to the electric field '''E''', the medium is termed ''nonlinear''. To a good approximation (for sufficiently weak fields, assuming no permanent dipole moments are present), '''P''' is given by a [[Taylor series]] in '''E''' whose coefficients are the nonlinear susceptibilities: :<math> \frac{P_i}{\varepsilon_0} = \sum_j \chi^{(1)}_{ij} E_j + \sum_{jk} \chi_{ijk}^{(2)} E_j E_k + \sum_{jk\ell} \chi_{ijk\ell}^{(3)} E_j E_k E_\ell + \cdots. \!</math> Here <math>\chi^{(1)}</math> is the linear susceptibility, <math>\chi^{(2)}</math> gives the [[Pockels effect]] and [[second harmonic generation]], and <math>\chi^{(3)}</math> gives the [[Kerr effect]]. This expansion shows the way higher-order tensors arise naturally in the subject matter.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)