Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Discrete Fourier transform=== Let <math>\left \{ \mathbf{ x_n } \right \} := x_0, x_1, \ldots, x_{N-1}</math> be a sequence of ''N'' complex numbers and <math>\left \{ \mathbf{X_k} \right \} := X_0, X_1, \ldots, X_{N-1},</math> be its [[Discrete Fourier transform#Uncertainty principles | discrete Fourier transform]]. Denote by <math>\|x\|_0</math> the number of non-zero elements in the time sequence <math>x_0,x_1,\ldots,x_{N-1}</math> and by <math>\|X\|_0</math> the number of non-zero elements in the frequency sequence <math>X_0,X_1,\ldots,X_{N-1}</math>. Then, <math display="block">\|x\|_0 \cdot \|X\|_0 \ge N.</math> This inequality is [[inequality (mathematics)#Sharp inequalities|sharp]], with equality achieved when ''x'' or ''X'' is a Dirac mass, or more generally when ''x'' is a nonzero multiple of a Dirac comb supported on a subgroup of the integers modulo ''N'' (in which case ''X'' is also a Dirac comb supported on a complementary subgroup, and vice versa). More generally, if ''T'' and ''W'' are subsets of the integers modulo ''N'', let <math>L_T,R_W : \ell^2(\mathbb Z/N\mathbb Z)\to\ell^2(\mathbb Z/N\mathbb Z)</math> denote the time-limiting operator and [[bandlimiting|band-limiting operator]]s, respectively. Then <math display="block">\|L_TR_W\|^2 \le \frac{|T||W|}{|G|} </math> where the norm is the [[operator norm]] of operators on the Hilbert space <math>\ell^2(\mathbb Z/N\mathbb Z)</math> of functions on the integers modulo ''N''. This inequality has implications for [[signal reconstruction]].<ref name="Donoho">{{cite journal |last1=Donoho |first1=D.L. |last2=Stark |first2=P.B |year=1989 |title=Uncertainty principles and signal recovery |journal=SIAM Journal on Applied Mathematics |volume=49 |issue=3 |pages=906β931 |doi=10.1137/0149053}}</ref> When ''N'' is a [[prime number]], a stronger inequality holds: <math display="block">\|x\|_0 + \|X\|_0 \ge N + 1.</math> Discovered by [[Terence Tao]], this inequality is also sharp.<ref>{{citation| journal=Mathematical Research Letters |volume=12 |year=2005 |issue=1 |title=An uncertainty principle for cyclic groups of prime order |pages=121β127 |author=[[Terence Tao]] |doi=10.4310/MRL.2005.v12.n1.a11 |arxiv=math/0308286 |s2cid=8548232 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)