Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weighted arithmetic mean
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Vector-valued estimates=== The above generalizes easily to the case of taking the mean of vector-valued estimates. For example, estimates of position on a plane may have less certainty in one direction than another. As in the scalar case, the weighted mean of multiple estimates can provide a [[maximum likelihood]] estimate. We simply replace the variance <math>\sigma^2</math> by the [[covariance matrix]] <math>\mathbf{C}</math> and the [[arithmetic inverse]] by the [[matrix inverse]] (both denoted in the same way, via superscripts); the weight matrix then reads:<ref>{{cite book |last=James |first=Frederick |title=Statistical Methods in Experimental Physics|year=2006|publisher=World Scientific|location=Singapore|isbn=981-270-527-9| edition=2nd|page=324}}</ref> <math display="block"> \mathbf{W}_i = \mathbf{C}_i^{-1}.</math> The weighted mean in this case is: <math display="block">\bar{\mathbf{x}} = \mathbf{C}_{\bar{\mathbf{x}}} \left(\sum_{i=1}^n \mathbf{W}_i \mathbf{x}_i\right),</math> (where the order of the [[matrix–vector product]] is not [[commutative]]), in terms of the covariance of the weighted mean: <math display="block">\mathbf{C}_{\bar{\mathbf{x}}} = \left(\sum_{i=1}^n \mathbf{W}_i\right)^{-1},</math> For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component. Then : <math>\mathbf{x}_1 := \begin{bmatrix}1 & 0\end{bmatrix}^\top, \qquad \mathbf{C}_1 := \begin{bmatrix}1 & 0\\ 0 & 100\end{bmatrix}</math> : <math>\mathbf{x}_2 := \begin{bmatrix}0 & 1\end{bmatrix}^\top, \qquad \mathbf{C}_2 := \begin{bmatrix}100 & 0\\ 0 & 1\end{bmatrix}</math> then the weighted mean is: : <math> \begin{align} \bar{\mathbf{x}} & = \left(\mathbf{C}_1^{-1} + \mathbf{C}_2^{-1}\right)^{-1} \left(\mathbf{C}_1^{-1} \mathbf{x}_1 + \mathbf{C}_2^{-1} \mathbf{x}_2\right) \\[5pt] & =\begin{bmatrix} 0.9901 &0\\ 0& 0.9901\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}0.9901 \\ 0.9901\end{bmatrix} \end{align} </math> which makes sense: the [1 0] estimate is "compliant" in the second component and the [0 1] estimate is compliant in the first component, so the weighted mean is nearly [1 1].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)