Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
3D rotation group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== *{{citation|title=[[Mathematical Methods in the Physical Sciences]]|first=Mary L.|last=Boas|author-link=Mary L. Boas|pages=120, 127, 129,155ff and 535|isbn=978-0471198260|edition=3rd|year=2006|publisher=John Wiley & sons}} *{{citation|last1=Curtright|first1 =T. L.|last2=Fairlie|first2=D. B.|last3=Zachos|first3=C. K.|year = 2014|title = A compact formula for rotations as spin matrix polynomials| journal =SIGMA| volume=10| page=084|doi=10.3842/SIGMA.2014.084|author-link=David Fairlie|author-link2=Thomas Curtright|author-link3=Cosmas Zachos|bibcode =2014SIGMA..10..084C|arxiv = 1402.3541 |s2cid =18776942}} * {{Citation|last=EngΓΈ|first=Kenth|year=2001|title=On the BCH-formula in ππ(3)|journal=BIT Numerical Mathematics|volume=41|issue=3|pages=629β632|issn=0006-3835|doi=10.1023/A:1021979515229|s2cid=126053191}} [http://www.ii.uib.no/publikasjoner/texrap/pdf/2000-201.pdf] *{{citation|first1=I.M.|last1=Gelfand|first2=R.A.|last2=Minlos|first3=Z.Ya.|last3=Shapiro|title=Representations of the Rotation and Lorentz Groups and their Applications|publisher=Pergamon Press|location=New York|year=1963|author-link1=Israel Gelfand|author-link2=Robert Adol'fovich Minlos}} * {{Citation |last1=Goldstein |first1=Herbert |author1-link=Herbert Goldstein |author2-link=Charles P. Poole |last2=Poole |first2=Charles P. |last3=Safko |first3=John L. |year=2002<!-- January 15 --> |title=Classical Mechanics |edition=third |publisher=[[Addison Wesley]] |isbn=978-0-201-65702-9}} *{{citation|year=2015|first=Brian C.|last=Hall|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition=2nd|publisher=Springer|series=Graduate Texts in Mathematics|volume=222|isbn=978-3319134666}} * {{cite book |last1=Hall |first1=Brian C. |title=Lie groups, Lie algebras, and representations : an elementary introduction |date=2003 |series=Graduate Texts in Mathematics |volume=222 |location=New York |isbn=0-387-40122-9 |publisher=Springer}} *{{citation|last=Jacobson|first=Nathan|author-link=Nathan Jacobson|year=2009|title=Basic algebra|edition=2nd|volume=1|publisher=Dover Publications|isbn=978-0-486-47189-1}} *{{citation|last=Joshi|first=A. W.|year=2007|title=Elements of Group Theory for Physicists|publisher=New Age International|pages=111ff|isbn=978-81-224-0975-8}} *{{citation|last=Rossmann|first= Wulf|title=Lie Groups β An Introduction Through Linear Groups|publisher=Oxford Science Publications|year=2002|series=Oxford Graduate Texts in Mathematics|isbn=0-19-859683-9}} *{{citation|author-link=Bartel Leendert van der Waerden|first=B. L.|last=van der Waerden|year=1952|title=Group Theory and Quantum Mechanics|publisher=Springer Publishing|isbn=((978-3642658624))<!-- isbn ok, goes to later Springer reprint of same edition -->}} (translation of the original 1932 edition, ''Die Gruppentheoretische Methode in Der Quantenmechanik''). *{{cite book |last1=Varadarajan |first1=V. S. |title=Lie groups, Lie algebras, and their representations |date=1984 |publisher=Springer-Verlag |location=New York |isbn=978-0-387-90969-1}} *{{cite web|first1=M.|last1=Veltman|first2=G.|last2='t Hooft|first3=B.|last3=de Wit|author-link1=Martinus Veltman|author-link2=Gerard 't Hooft|author-link3=Bernard de Wit|year=2007|title=Lie Groups in Physics (online lecture)|url= http://www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf|access-date=2016-10-24}}. [[Category:Lie groups]] [[Category:Rotational symmetry]] [[Category:Rotation in three dimensions]] [[Category:Euclidean solid geometry]] [[Category:3-manifolds]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)