Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Allan variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Power-law noise== The Allan variance will treat various [[power-law noise]] types differently, conveniently allowing them to be identified and their strength estimated. As a convention, the measurement system width (high corner frequency) is denoted ''f''<sub>''H''</sub>. {| class="wikitable" |+ Allan variance power-law response |- !Power-law noise type !Phase noise slope !Frequency noise slope !Power coefficient !Phase noise<br /> <math>S_x(f)</math> !Allan variance<br /> <math>\sigma_y^2(\tau)</math> !Allan deviation<br /> <math>\sigma_y(\tau)</math> |- |white phase modulation (WPM) |<math>f^0=1</math> |<math>f^2</math> |<math>h_2</math> |<math>\frac{1}{(2\pi)^2}h_2</math> |<math>\frac{3 f_H}{4\pi^2\tau^2}h_2</math> |<math>\frac{\sqrt{3 f_H}}{2\pi\tau}\sqrt{h_2}</math> |- |flicker phase modulation (FPM) |<math>f^{-1}</math> |<math>f^1=f</math> |<math>h_1</math> |<math>\frac{1}{(2\pi)^2f}h_1</math> |<math>\frac{3[\gamma+\ln(2\pi f_H\tau)]-\ln 2}{4\pi^2\tau^2}h_1</math> |<math>\frac{\sqrt{3[\gamma+\ln(2\pi f_H\tau)]-\ln 2}}{2\pi\tau}\sqrt{h_1}</math> |- |white frequency modulation (WFM) |<math>f^{-2}</math> |<math>f^0=1</math> |<math>h_0</math> |<math>\frac{1}{(2\pi)^2f^2}h_0</math> |<math>\frac{1}{2\tau}h_0</math> |<math>\frac{1}{\sqrt{2\tau}}\sqrt{h_0}</math> |- |flicker frequency modulation (FFM) |<math>f^{-3}</math> |<math>f^{-1}</math> |<math>h_{-1}</math> |<math>\frac{1}{(2\pi)^2f^3}h_{-1}</math> |<math>2\ln(2)h_{-1}</math> |<math>\sqrt{2\ln(2)}\sqrt{h_{-1}}</math> |- |random walk frequency modulation (RWFM) |<math>f^{-4}</math> |<math>f^{-2}</math> |<math>h_{-2}</math> |<math>\frac{1}{(2\pi)^2f^4}h_{-2}</math> |<math>\frac{2\pi^2\tau}{3}h_{-2}</math> |<math>\frac{\pi\sqrt{2\tau}}{\sqrt{3}}\sqrt{h_{-2}}</math> |} As found in<ref name="NBSTN394">J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. C. Vessot, G. M. R. Winkler: ''[https://tf.nist.gov/general/tn1337/Tn146.PDF Characterization of Frequency Stability]'', NBS Technical Note 394, 1970.</ref><ref>J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler: ''[https://tf.nist.gov/general/tn1337/Tn146.PDF Characterization of Frequency Stability]'', IEEE Transactions on Instruments and Measurements 20, pp. 105β120, 1971.</ref> and in modern forms.<ref name=Bregni2002>Bregni, Stefano: [https://books.google.com/books?id=APEBaL4WHNoC ''Synchronisation of digital telecommunication networks''], Wiley 2002, {{ISBN|0-471-61550-1}}.</ref><ref name=NISTSP1065>NIST SP 1065: [https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505 ''Handbook of Frequency Stability Analysis''] .</ref> The Allan variance is unable to distinguish between WPM and FPM, but is able to resolve the other power-law noise types. In order to distinguish WPM and FPM, the [[modified Allan variance]] needs to be employed. The above formulas assume that :<math>\tau \gg \frac{1}{2\pi f_H},</math> and thus that the bandwidth of the observation time is much lower than the instruments bandwidth. When this condition is not met, all noise forms depend on the instrument's bandwidth. ===''Ξ±''β''ΞΌ'' mapping=== The detailed mapping of a phase modulation of the form :<math>S_x(f) = \frac{1}{4\pi^2} h_\alpha f^{\alpha - 2} = \frac{1}{4\pi^2} h_\alpha f^\beta,</math> where :<math>\beta \equiv \alpha - 2,</math> or frequency modulation of the form :<math>S_y(f) = h_\alpha f^\alpha</math> into the Allan variance of the form :<math>\sigma_y^2(\tau) = K_\alpha h_\alpha \tau^\mu</math> can be significantly simplified by providing a mapping between ''Ξ±'' and ''ΞΌ''. A mapping between ''Ξ±'' and ''K''<sub>''Ξ±''</sub> is also presented for convenience:<ref name=IEEE1139/> :{| class="wikitable" |+ Allan variance ''Ξ±''β''ΞΌ'' mapping |- !''Ξ±'' !''Ξ²'' !''ΞΌ'' !''K''<sub>''Ξ±''</sub> |- | β2 | β4 | 1 |<math>\frac{2\pi^2}{3}</math> |- | β1 | β3 | 0 |<math>2\ln 2</math> |- | 0 | β2 | β1 |<math>\frac{1}{2}</math> |- | 1 | β1 | β2 |<math>\frac{3[\gamma+\ln(2\pi f_H\tau)]-\ln 2}{4\pi^2}</math> |- | 2 | 0 | β2 |<math>\frac{3f_H}{4\pi^2}</math> |} ===General conversion from phase noise=== A signal with spectral phase noise <math>S_\varphi</math> with units rad<sup>2</sup>/Hz can be converted to Allan Variance by<ref name=NISTSP1065/> : <math>\sigma^2_y(\tau) = \frac{2}{\nu_0^2} \int^{f_b}_0 S_\varphi(f) \frac{\sin^4(\pi \tau f)}{(\pi \tau)^2} \, df.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)