Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
BCH code
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Decoding with unreadable characters with a small number of errors ==== Let us show the algorithm behaviour for the case with small number of errors. Let the received word is [ 1 {{color|red|0}} 0 ? 1 1 ? 0 0 0 1 0 1 0 0 ]. Again, replace the unreadable characters by zeros while creating the polynomial reflecting their positions <math>\Gamma(x) = \left(\alpha^{8}x - 1\right)\left(\alpha^{11}x - 1\right).</math> Compute the syndromes <math>s_1 = \alpha^{4}, s_2 = \alpha^{-7}, s_3 = \alpha^{1}, s_4 = \alpha^{1}, s_5 = \alpha^{0},</math> and <math>s_6 = \alpha^{2}.</math> Create syndrome polynomial :<math>\begin{align} S(x) &= \alpha^{4} + \alpha^{-7}x + \alpha^{1}x^2 + \alpha^{1}x^3 + \alpha^{0}x^4 + \alpha^{2}x^5, \\ S(x)\Gamma(x) &= \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 + \alpha^{-1}x^6 + \alpha^{6}x^7. \end{align}</math> Let us run the extended Euclidean algorithm: :<math>\begin{align} \begin{pmatrix} S(x)\Gamma(x) \\ x^6 \end{pmatrix} &= \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 + \alpha^{-1}x^6 + \alpha^{6}x^7 \\ x^6 \end{pmatrix} \\ &= \begin{pmatrix} \alpha^{-1} + \alpha^{6}x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x^6 \\ \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 + 2\alpha^{-1}x^6 + 2\alpha^{6}x^7 \end{pmatrix} \\ &= \begin{pmatrix} \alpha^{-1} + \alpha^{6}x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha^{3} + \alpha^{1}x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 \\ \alpha^{7} + \left(\alpha^{-5} + \alpha^{5}\right)x + 2\alpha^{-7}x^2 + 2\alpha^{6}x^3 + 2\alpha^{4}x^4 + 2\alpha^{2}x^5 + 2x^6 \end{pmatrix} \\ &= \begin{pmatrix} \left(1 + \alpha^{2}\right) + \left(\alpha^{0} + \alpha^{-6}\right)x + \alpha^{7}x^2 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & 1 \end{pmatrix} \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 \\ \alpha^{7} + \alpha^{0}x \end{pmatrix} \end{align}</math> We have reached polynomial of degree at most 3, and as : <math> \begin{pmatrix} -1 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & -\left(\alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2\right) \end{pmatrix} \begin{pmatrix} \alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, </math> we get : <math> \begin{pmatrix} -1 & \alpha^{-1} + \alpha^{6}x \\ \alpha^{3} + \alpha^{1}x & -\left(\alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2\right) \end{pmatrix}\begin{pmatrix} S(x)\Gamma(x) \\ x^6 \end{pmatrix} = \begin{pmatrix} \alpha^{4} + \alpha^{7}x + \alpha^{5}x^2 + \alpha^{3}x^3 + \alpha^{1}x^4 + \alpha^{-1}x^5 \\ \alpha^{7} + \alpha^{0}x \end{pmatrix}. </math> Therefore, : <math>S(x)\Gamma(x)\left(\alpha^{3} + \alpha^{1}x\right) - \left(\alpha^{-7} + \alpha^{7}x + \alpha^{7}x^2\right)x^6 = \alpha^{7} + \alpha^{0}x.</math> Let <math>\Lambda(x) = \alpha^{3} + \alpha^{1}x.</math> Don't worry that <math>\lambda_0 \neq 1.</math> The root of <math>\Lambda(x)</math> is <math>\alpha^{3-1}.</math> Let :<math>\begin{align} \Xi(x) &= \Gamma(x)\Lambda(x) = \alpha^{3} + \alpha^{-7}x + \alpha^{-4}x^2 + \alpha^{5}x^3, \\ \Omega(x) &= S(x)\Xi(x) \equiv \alpha^{7} + \alpha^{0}x \bmod{x^6} \end{align}</math> Let us look for error values using formula <math>e_j = -\Omega\left(\alpha^{-i_j}\right)/\Xi'\left(\alpha^{-i_j}\right),</math> where <math>\alpha^{-i_j}</math> are roots of polynomial <math>\Xi(x).</math> : <math>\Xi'(x) = \alpha^{-7} + \alpha^{5}x^2.</math> We get :<math>\begin{align} e_1 &= -\frac{\Omega\left(\alpha^4\right)}{\Xi'\left(\alpha^{4}\right)} = \frac{\alpha^{7} + \alpha^{4}}{\alpha^{-7} + \alpha^{-2}} = \frac{\alpha^{3}}{\alpha^{3}} = 1 \\ e_2 &= -\frac{\Omega\left(\alpha^7\right)}{\Xi'\left(\alpha^{7}\right)} = \frac{\alpha^{7} + \alpha^{7}}{\alpha^{-7} + \alpha^{4}} = 0 \\ e_3 &= -\frac{\Omega\left(\alpha^2\right)}{\Xi'\left(\alpha^2\right)} = \frac{\alpha^{7} + \alpha^{2}}{\alpha^{-7} + \alpha^{-6}} = \frac{\alpha^{-3}}{\alpha^{-3}} = 1 \end{align}</math> The fact that <math>e_3 = 1</math> should not be surprising. Corrected code is therefore [ 1 {{color|green|1}} 0 {{color|green|1}} 1 1 {{color|green|0}} 0 0 0 1 0 1 0 0].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)