Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Characteristic function=== [[File:Re(CharacteristicFunction) Beta Distr alpha=beta from 0 to 25 Back - J. Rodal.jpg|325px|thumb|[[Characteristic function (probability theory)|Re(characteristic function)]] symmetric case ''α'' = ''β'' ranging from 25 to 0]][[File:Re(CharacteristicFunc) Beta Distr alpha=beta from 0 to 25 Front- J. Rodal.jpg|325px|thumb|[[Characteristic function (probability theory)|Re(characteristic function)]] symmetric case ''α'' = ''β'' ranging from 0 to 25]][[File:Re(CharacteristFunc) Beta Distr alpha from 0 to 25 and beta=alpha+0.5 Back - J. Rodal.jpg|325px|thumb|[[Characteristic function (probability theory)|Re(characteristic function)]] ''β'' = ''α'' + 1/2; ''α'' ranging from 25 to 0]][[File:Re(CharacterFunc) Beta Distrib. beta from 0 to 25, alpha=beta+0.5 Back - J. Rodal.jpg|325px|thumb|[[Characteristic function (probability theory)|Re(characteristic function)]] ''α'' = ''β'' + 1/2; ''β'' ranging from 25 to 0]][[File:Re(CharacterFunc) Beta Distr. beta from 0 to 25, alpha=beta+0.5 Front - J. Rodal.jpg|325px|thumb|[[Characteristic function (probability theory)|Re(characteristic function)]] ''α'' = ''β'' + 1/2; ''β'' ranging from 0 to 25]] The [[Characteristic function (probability theory)|characteristic function]] is the [[Fourier transform]] of the probability density function. The characteristic function of the beta distribution is [[confluent hypergeometric function|Kummer's confluent hypergeometric function]] (of the first kind):<ref name=JKB /><ref name=Abramowitz /><ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor1-first=Daniel |editor1-last=Zwillinger |editor2-first=Victor Hugo |editor2-last=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=en |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik}}</ref> :<math>\begin{align} \varphi_X(\alpha;\beta;t) &= \operatorname{E}\left[e^{itX}\right]\\ &= \int_0^1 e^{itx} f(x;\alpha,\beta) \, dx \\ &={}_1F_1(\alpha; \alpha+\beta; it)\!\\ &=\sum_{n=0}^\infty \frac {\alpha^{(n)} (it)^n} {(\alpha+\beta)^{(n)} n!}\\ &= 1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{(it)^k}{k!} \end{align}</math> where : <math>x^{(n)}=x(x+1)(x+2)\cdots(x+n-1)</math> is the [[rising factorial]], also called the "Pochhammer symbol". The value of the characteristic function for ''t'' = 0, is one: :<math> \varphi_X(\alpha;\beta;0)={}_1F_1(\alpha; \alpha+\beta; 0) = 1.</math> Also, the real and imaginary parts of the characteristic function enjoy the following symmetries with respect to the origin of variable ''t'': :<math> \operatorname{Re} \left [ {}_1F_1(\alpha; \alpha+\beta; it) \right ] = \operatorname{Re} \left [ {}_1F_1(\alpha; \alpha+\beta; - it) \right ]</math> :<math> \operatorname{Im} \left [ {}_1F_1(\alpha; \alpha+\beta; it) \right ] = - \operatorname{Im} \left [ {}_1F_1(\alpha; \alpha+\beta; - it) \right ]</math> The symmetric case ''α'' = ''β'' simplifies the characteristic function of the beta distribution to a [[Bessel function]], since in the special case ''α'' + ''β'' = 2''α'' the [[confluent hypergeometric function]] (of the first kind) reduces to a [[Bessel function]] (the modified Bessel function of the first kind <math>I_{\alpha-\frac 1 2}</math> ) using [[Ernst Kummer|Kummer's]] second transformation as follows: :<math>\begin{align} {}_1F_1(\alpha;2\alpha; it) &= e^{\frac{it}{2}} {}_0F_1 \left(; \alpha+\tfrac{1}{2}; \frac{(it)^2}{16} \right) \\ &= e^{\frac{it}{2}} \left(\frac{it}{4}\right)^{\frac{1}{2}-\alpha} \Gamma\left(\alpha+\tfrac{1}{2}\right) I_{\alpha-\frac 1 2} \left(\frac{it}{2}\right).\end{align}</math> In the accompanying plots, the [[Complex number|real part]] (Re) of the [[Characteristic function (probability theory)|characteristic function]] of the beta distribution is displayed for symmetric (''α'' = ''β'') and skewed (''α'' ≠ ''β'') cases.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)