Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Big O notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Family of Bachmann–Landau notations === {| class="wikitable" |- ! Notation ! Name<ref name="knuth" /> ! Description ! Formal definition ! Limit definition<ref name=Balcázar>{{cite journal |last1=Balcázar |first1=José L. |last2=Gabarró |first2=Joaquim |title=Nonuniform complexity classes specified by lower and upper bounds |journal=RAIRO – Theoretical Informatics and Applications – Informatique Théorique et Applications |volume=23 |issue=2 |page=180 |url=http://archive.numdam.org/article/ITA_1989__23_2_177_0.pdf |via=Numdam |access-date=14 March 2017 |language=en |issn=0988-3754 |archive-date=14 March 2017 |archive-url=https://web.archive.org/web/20170314153158/http://archive.numdam.org/article/ITA_1989__23_2_177_0.pdf |url-status=live }}</ref><ref name=Cucker>{{cite book |last1=Cucker |first1=Felipe |last2=Bürgisser |first2=Peter |title=Condition: The Geometry of Numerical Algorithms |year=2013 |publisher=Springer |location=Berlin, Heidelberg |isbn=978-3-642-38896-5 |pages=467–468 |chapter=A.1 Big Oh, Little Oh, and Other Comparisons |chapter-url=https://books.google.com/books?id=SNu4BAAAQBAJ&pg=PA467 |doi=10.1007/978-3-642-38896-5}}</ref><ref name=Wild>{{cite journal |first1=Paul |last1=Vitányi |author1-link=Paul Vitanyi |first2=Lambert |last2=Meertens |author2-link=Lambert Meertens |title=Big Omega versus the wild functions |journal=ACM SIGACT News |volume=16 |issue=4 |date=April 1985 |pages=56–59 |doi=10.1145/382242.382835 |url=http://www.kestrel.edu/home/people/meertens/publications/papers/Big_Omega_contra_the_wild_functions.pdf |doi-access=free |s2cid-access=free |citeseerx=10.1.1.694.3072 |s2cid=11700420 |access-date=2017-03-14 |archive-date=2016-03-10 |archive-url=https://web.archive.org/web/20160310012405/http://www.kestrel.edu/home/people/meertens/publications/papers/Big_Omega_contra_the_wild_functions.pdf |url-status=live }}</ref><ref name="knuth"/><ref name="HL"/> |- | <math>f(n) = o(g(n))</math> | Small O; Small Oh; Little O; Little Oh | {{mvar|f}} is dominated by {{mvar|g}} asymptotically (for any constant factor <math>k</math>) | <math>\forall k>0 \, \exists n_0 \, \forall n > n_0\colon |f(n)| \leq k\, g(n)</math> | <math>\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0</math> |- | <math>f(n) = O(g(n))</math> | Big O; Big Oh; Big Omicron | <math>|f|</math> is asymptotically bounded above by {{mvar|g}} (up to constant factor <math>k</math>) | <math>\exists k > 0 \, \exists n_0 \, \forall n>n_0\colon |f(n)| \leq k\, g(n)</math> | <math>\limsup_{n \to \infty} \frac{\left|f(n)\right|}{g(n)} < \infty</math> |- | <math>f(n) \asymp g(n)</math> (Hardy's notation) or <math>f(n) = \Theta(g(n))</math> (Knuth notation) | Of the same order as (Hardy); Big Theta (Knuth) | {{mvar|f}} is asymptotically bounded by {{mvar|g}} both above (with constant factor <math>k_2</math>) and below (with constant factor <math>k_1</math>) | <math>\exists k_1 > 0 \, \exists k_2>0 \, \exists n_0 \, \forall n > n_0\colon</math> <math>k_1 \, g(n) \leq f(n) \leq k_2 \, g(n)</math> | <math>f(n) = O(g(n))</math> and <math>g(n) = O(f(n))</math> |- | <math>f(n)\sim g(n)</math> | Asymptotic equivalence | {{mvar|f}} is equal to {{mvar|g}} [[Asymptotic analysis|asymptotically]] | <math>\forall \varepsilon > 0 \, \exists n_0 \, \forall n > n_0\colon \left| \frac{f(n)}{g(n)} - 1 \right| < \varepsilon</math> | <math>\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1</math> |- | <math>f(n) = \Omega(g(n))</math> | Big Omega in complexity theory (Knuth) | {{mvar|f}} is bounded below by {{mvar|g}} asymptotically | <math>\exists k > 0 \, \exists n_0 \, \forall n>n_0\colon f(n) \geq k\, g(n)</math> | <math>\liminf_{n \to \infty} \frac{f(n)}{g(n)} > 0 </math> |- | <math>f(n) = \omega(g(n))</math> | Small Omega; Little Omega | {{mvar|f}} dominates {{mvar|g}} asymptotically | <math>\forall k > 0 \, \exists n_0 \, \forall n > n_0 \colon f(n) > k\, g(n)</math> | <math>\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty</math> |- #style="border-top: 2px solid gray;" | <math>f(n) = \Omega(g(n))</math> | Big Omega in number theory (Hardy–Littlewood) | <math>|f|</math> is not dominated by {{mvar|g}} asymptotically | <math>\exists k>0 \, \forall n_0 \, \exists n > n_0\colon |f(n)| \geq k\, g(n)</math> | <math>\limsup_{n \to \infty} \frac{\left|f(n)\right|}{g(n)} > 0 </math> |} The limit definitions assume <math>g(n) > 0</math> for sufficiently large <math>n</math>. The table is (partly) sorted from smallest to largest, in the sense that <math>o,O,\Theta,\sim, </math> (Knuth's version of) <math>\Omega, \omega </math> on functions correspond to <math><,\leq,\approx,=, </math><math>\geq,> </math> on the real line<ref name=Wild/> (the Hardy–Littlewood version of <math>\Omega </math>, however, doesn't correspond to any such description). Computer science uses the big <math>O </math>, big Theta <math>\Theta </math>, little <math>o </math>, little omega <math>\omega </math> and Knuth's big Omega <math>\Omega </math> notations.<ref>{{Introduction to Algorithms|edition=2|pages=41–50}}</ref> Analytic number theory often uses the big <math>O </math>, small <math>o </math>, Hardy's <math>\asymp</math>,<ref name=GT>Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, « Notation », page xxiii. American Mathematical Society, Providence RI, 2015.</ref> Hardy–Littlewood's big Omega <math>\Omega </math> (with or without the +, − or ± subscripts) and <math>\sim</math> notations.<ref name=Ivic/> The small omega <math>\omega </math> notation is not used as often in analysis.<ref>for example it is omitted in: {{cite web |last1=Hildebrand |first1=A.J. |title=Asymptotic Notations |url=http://www.math.uiuc.edu/~ajh/595ama/ama-ch2.pdf |website=Asymptotic Methods in Analysis |series=Math 595, Fall 2009 |publisher=University of Illinois |place=Urbana, IL |department=Department of Mathematics |access-date=14 March 2017 |archive-date=14 March 2017 |archive-url=https://web.archive.org/web/20170314153801/http://www.math.uiuc.edu/~ajh/595ama/ama-ch2.pdf |url-status=live }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)