Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cold fusion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Calorimetry errors==== The calculation of excess heat in electrochemical cells involves certain assumptions.<ref>{{harvnb|Biberian|2007}} "Input power is calculated by multiplying current and voltage, and output power is deduced from the measurement of the temperature of the cell and that of the bath"</ref> Errors in these assumptions have been offered as non-nuclear explanations for excess heat. One assumption made by Fleischmann and Pons is that the efficiency of electrolysis is nearly 100%, meaning nearly all the electricity applied to the cell resulted in electrolysis of water, with negligible [[Joule heating|resistive heating]] and substantially all the electrolysis product leaving the cell unchanged.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}} This assumption gives the amount of energy expended converting liquid D<sub>2</sub>O into gaseous D<sub>2</sub> and O<sub>2</sub>.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990|loc=Appendix}} The efficiency of electrolysis is less than one if hydrogen and oxygen recombine to a significant extent within the calorimeter. Several researchers have described potential mechanisms by which this process could occur and thereby account for excess heat in electrolysis experiments.{{sfn|ps=|Shkedi|McDonald|Breen|Maguire|1995}}{{sfn|ps=|Jones|Hansen|Jones|Shelton|1995|p=1}}{{sfn|ps=|Shanahan|2002}} Another assumption is that heat loss from the calorimeter maintains the same relationship with measured temperature as found when calibrating the calorimeter.{{sfn|ps=|Fleischmann|Pons|Anderson|Li|1990}} This assumption ceases to be accurate if the temperature distribution within the cell becomes significantly altered from the condition under which calibration measurements were made.<ref>{{harvnb|Biberian|2007}} "Almost all the heat is dissipated by radiation and follows the temperature fourth power law. The cell is calibrated ..."</ref> This can happen, for example, if fluid circulation within the cell becomes significantly altered.{{sfn|ps=|Browne|1989|loc=para. 16}}{{sfn|ps=|Wilson|Bray|Kosky|Vakil|1992}} Recombination of hydrogen and oxygen within the calorimeter would also alter the heat distribution and invalidate the calibration.{{sfn|ps=|Shanahan|2002}}{{sfn|ps=|Shanahan|2005}}{{sfn|ps=|Shanahan|2006}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)