Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Differential operators=== ====Differentiation of distributions==== Let <math>A : \mathcal{D}(U) \to \mathcal{D}(U)</math> be the partial derivative operator <math>\tfrac{\partial}{\partial x_k}.</math> To extend <math>A</math> we compute its transpose: <math display=block>\begin{align} \langle {}^{t}A(D_\psi), \phi \rangle &= \int_U \psi (A\phi) \,dx && \text{(See above.)} \\ &= \int_U \psi \frac{\partial\phi}{\partial x_k} \, dx \\[4pt] &= -\int_U \phi \frac{\partial\psi}{\partial x_k}\, dx && \text{(integration by parts)} \\[4pt] &= -\left\langle \frac{\partial\psi}{\partial x_k}, \phi \right\rangle \\[4pt] &= -\langle A \psi, \phi \rangle = \langle - A \psi, \phi \rangle \end{align}</math> Therefore <math>{}^{t}A = -A.</math> Thus, the partial derivative of <math>T</math> with respect to the coordinate <math>x_k</math> is defined by the formula <math display=block>\left\langle \frac{\partial T}{\partial x_k}, \phi \right\rangle = - \left\langle T, \frac{\partial \phi}{\partial x_k} \right\rangle \qquad \text{ for all } \phi \in \mathcal{D}(U).</math> With this definition, every distribution is infinitely differentiable, and the derivative in the direction <math>x_k</math> is a [[linear operator]] on <math>\mathcal{D}'(U).</math> More generally, if <math>\alpha</math> is an arbitrary [[multi-index]], then the partial derivative <math>\partial^\alpha T</math> of the distribution <math>T \in \mathcal{D}'(U)</math> is defined by <math display=block>\langle \partial^\alpha T, \phi \rangle = (-1)^{|\alpha|} \langle T, \partial^\alpha \phi \rangle \qquad \text{ for all } \phi \in \mathcal{D}(U).</math> Differentiation of distributions is a continuous operator on <math>\mathcal{D}'(U);</math> this is an important and desirable property that is not shared by most other notions of differentiation. If <math>T</math> is a distribution in <math>\R</math> then <math display=block>\lim_{x \to 0} \frac{T - \tau_x T}{x} = T'\in \mathcal{D}'(\R),</math> where <math>T'</math> is the derivative of <math>T</math> and <math>\tau_x</math> is a translation by <math>x;</math> thus the derivative of <math>T</math> may be viewed as a limit of quotients.{{sfn|Rudin|1991|p=180}} ====Differential operators acting on smooth functions==== A linear differential operator in <math>U</math> with smooth coefficients acts on the space of smooth functions on <math>U.</math> Given such an operator <math display=inline>P := \sum_\alpha c_\alpha \partial^\alpha,</math> we would like to define a continuous linear map, <math>D_P</math> that extends the action of <math>P</math> on <math>C^\infty(U)</math> to distributions on <math>U.</math> In other words, we would like to define <math>D_P</math> such that the following diagram [[Commutative diagram|commutes]]: <math display=block>\begin{matrix} \mathcal{D}'(U) & \stackrel{D_P}{\longrightarrow} & \mathcal{D}'(U) \\[2pt] \uparrow & & \uparrow \\[2pt] C^\infty(U) & \stackrel{P}{\longrightarrow} & C^\infty(U) \end{matrix}</math> where the vertical maps are given by assigning <math>f \in C^\infty(U)</math> its canonical distribution <math>D_f \in \mathcal{D}'(U),</math> which is defined by: <math display=block>D_f(\phi) = \langle f, \phi \rangle := \int_U f(x) \phi(x) \,dx \quad \text{ for all } \phi \in \mathcal{D}(U).</math> With this notation, the diagram commuting is equivalent to: <math display=block>D_{P(f)} = D_PD_f \qquad \text{ for all } f \in C^\infty(U).</math> To find <math>D_P,</math> the transpose <math>{}^{t} P : \mathcal{D}'(U) \to \mathcal{D}'(U)</math> of the continuous induced map <math>P : \mathcal{D}(U)\to \mathcal{D}(U)</math> defined by <math>\phi \mapsto P(\phi)</math> is considered in the lemma below. This leads to the following definition of the differential operator on <math>U</math> called {{em|the '''formal transpose''' of <math>P,</math>}} which will be denoted by <math>P_*</math> to avoid confusion with the transpose map, that is defined by <math display=block>P_* := \sum_\alpha b_\alpha \partial^\alpha \quad \text{ where } \quad b_\alpha := \sum_{\beta \geq \alpha} (-1)^{|\beta|} \binom{\beta}{\alpha} \partial^{\beta-\alpha} c_\beta.</math> {{math theorem|name=Lemma|math_statement= Let <math>P</math> be a linear differential operator with smooth coefficients in <math>U.</math> Then for all <math>\phi \in \mathcal{D}(U)</math> we have <math display=block>\left\langle {}^{t}P(D_f), \phi \right\rangle = \left\langle D_{P_*(f)}, \phi \right\rangle,</math> which is equivalent to: <math display=block>{}^{t}P(D_f) = D_{P_*(f)}.</math>}} {{collapse top|title=Proof|left=true}} As discussed above, for any <math>\phi \in \mathcal{D}(U),</math> the transpose may be calculated by: <math display=block>\begin{align} \left\langle {}^{t}P(D_f), \phi \right\rangle &= \int_U f(x) P(\phi)(x) \,dx \\ &= \int_U f(x) \left[\sum\nolimits_\alpha c_\alpha(x) (\partial^\alpha \phi)(x) \right] \,dx \\ &= \sum\nolimits_\alpha \int_U f(x) c_\alpha(x) (\partial^\alpha \phi)(x) \,dx \\ &= \sum\nolimits_\alpha (-1)^{|\alpha|} \int_U \phi(x) (\partial^\alpha(c_\alpha f))(x) \,d x \end{align}</math> For the last line we used [[integration by parts]] combined with the fact that <math>\phi</math> and therefore all the functions <math>f (x)c_\alpha (x) \partial^\alpha \phi(x)</math> have compact support.<ref group="note">For example, let <math>U = \R</math> and take <math>P</math> to be the ordinary derivative for functions of one real variable and assume the support of <math>\phi</math> to be contained in the finite interval <math>(a,b),</math> then since <math>\operatorname{supp}(\phi) \subseteq (a, b)</math> <math display=block>\begin{align} \int_\R \phi'(x)f(x)\,dx &= \int_a^b \phi'(x)f(x) \,dx \\ &= \phi(x)f(x)\big\vert_a^b - \int_a^b f'(x) \phi(x) \,d x \\ &= \phi(b)f(b) - \phi(a)f(a) - \int_a^b f'(x) \phi(x) \,d x \\ &=-\int_a^b f'(x) \phi(x) \,d x \end{align}</math> where the last equality is because <math>\phi(a) = \phi(b) = 0.</math></ref> Continuing the calculation above, for all <math>\phi \in \mathcal{D}(U):</math> <math display=block>\begin{align} \left\langle {}^{t}P(D_f), \phi \right\rangle &=\sum\nolimits_\alpha (-1)^{|\alpha|} \int_U \phi(x) (\partial^\alpha(c_\alpha f))(x) \,dx && \text{As shown above} \\[4pt] &= \int_U \phi(x) \sum\nolimits_\alpha (-1)^{|\alpha|} (\partial^\alpha(c_\alpha f))(x)\,dx \\[4pt] &= \int_U \phi(x) \sum_\alpha \left[\sum_{\gamma \le \alpha} \binom{\alpha}{\gamma} (\partial^{\gamma}c_\alpha)(x) (\partial^{\alpha-\gamma}f)(x) \right] \,dx && \text{Leibniz rule}\\ &= \int_U \phi(x) \left[\sum_\alpha \sum_{\gamma \le \alpha} (-1)^{|\alpha|} \binom{\alpha}{\gamma} (\partial^{\gamma}c_\alpha)(x) (\partial^{\alpha-\gamma}f)(x)\right] \,dx \\ &= \int_U \phi(x) \left[ \sum_\alpha \left[ \sum_{\beta \geq \alpha} (-1)^{|\beta|} \binom{\beta}{\alpha} \left(\partial^{\beta-\alpha}c_{\beta}\right)(x) \right] (\partial^\alpha f)(x)\right] \,dx && \text{Grouping terms by derivatives of } f \\ &= \int_U \phi(x) \left[\sum\nolimits_\alpha b_\alpha(x) (\partial^\alpha f)(x) \right] \, dx && b_\alpha:=\sum_{\beta \geq \alpha} (-1)^{|\beta|} \binom{\beta}{\alpha} \partial^{\beta-\alpha}c_{\beta} \\ &= \left\langle \left(\sum\nolimits_\alpha b_\alpha \partial^\alpha \right) (f), \phi \right\rangle \end{align}</math> {{collapse bottom}} The Lemma combined with the fact that the formal transpose of the formal transpose is the original differential operator, that is, <math>P_{**}= P,</math>{{sfn|Trèves|2006|pp=247-252}} enables us to arrive at the correct definition: the formal transpose induces the (continuous) canonical linear operator <math>P_* : C_c^\infty(U) \to C_c^\infty(U)</math> defined by <math>\phi \mapsto P_*(\phi).</math> We claim that the transpose of this map, <math>{}^{t}P_* : \mathcal{D}'(U) \to \mathcal{D}'(U),</math> can be taken as <math>D_P.</math> To see this, for every <math>\phi \in \mathcal{D}(U),</math> compute its action on a distribution of the form <math>D_f</math> with <math>f \in C^\infty(U)</math>: <math display=block>\begin{align} \left\langle {}^{t}P_*\left(D_f\right),\phi \right\rangle &= \left\langle D_{P_{**}(f)}, \phi \right\rangle && \text{Using Lemma above with } P_* \text{ in place of } P\\ &= \left\langle D_{P(f)}, \phi \right\rangle && P_{**} = P \end{align}</math> We call the continuous linear operator <math>D_P := {}^{t}P_* : \mathcal{D}'(U) \to \mathcal{D}'(U)</math> the '''{{em|differential operator on distributions extending <math>P</math>}}'''.{{sfn|Trèves|2006|pp=247-252}} Its action on an arbitrary distribution <math>S</math> is defined via: <math display=block>D_P(S)(\phi) = S\left(P_*(\phi)\right) \quad \text{ for all } \phi \in \mathcal{D}(U).</math> If <math>(T_i)_{i=1}^\infty</math> converges to <math>T \in \mathcal{D}'(U)</math> then for every multi-index <math>\alpha, (\partial^\alpha T_i)_{i=1}^\infty</math> converges to <math>\partial^\alpha T \in \mathcal{D}'(U).</math> ====Multiplication of distributions by smooth functions==== A differential operator of order 0 is just multiplication by a smooth function. And conversely, if <math>f</math> is a smooth function then <math>P := f(x)</math> is a differential operator of order 0, whose formal transpose is itself (that is, <math>P_* = P</math>). The induced differential operator <math>D_P : \mathcal{D}'(U) \to \mathcal{D}'(U)</math> maps a distribution <math>T</math> to a distribution denoted by <math>fT := D_P(T).</math> We have thus defined the multiplication of a distribution by a smooth function. We now give an alternative presentation of the multiplication of a distribution <math>T</math> on <math>U</math> by a smooth function <math>m : U \to \R.</math> The product <math>mT</math> is defined by <math display=block>\langle mT, \phi \rangle = \langle T, m\phi \rangle \qquad \text{ for all } \phi \in \mathcal{D}(U).</math> This definition coincides with the transpose definition since if <math>M : \mathcal{D}(U) \to \mathcal{D}(U)</math> is the operator of multiplication by the function <math>m</math> (that is, <math>(M\phi)(x) = m(x)\phi(x)</math>), then <math display=block>\int_U (M \phi)(x) \psi(x)\,dx = \int_U m(x) \phi(x) \psi(x)\,d x = \int_U \phi(x) m(x) \psi(x) \,d x = \int_U \phi(x) (M \psi)(x)\,d x,</math> so that <math>{}^tM = M.</math> Under multiplication by smooth functions, <math>\mathcal{D}'(U)</math> is a [[Module (mathematics)|module]] over the [[ring (mathematics)|ring]] <math>C^\infty(U).</math> With this definition of multiplication by a smooth function, the ordinary [[product rule]] of calculus remains valid. However, some unusual identities also arise. For example, if <math>\delta</math> is the Dirac delta distribution on <math>\R,</math> then <math>m \delta = m(0) \delta,</math> and if <math>\delta^'</math> is the derivative of the delta distribution, then <math display=block>m\delta' = m(0) \delta' - m' \delta = m(0) \delta' - m'(0) \delta.</math> The bilinear multiplication map <math>C^\infty(\R^n) \times \mathcal{D}'(\R^n) \to \mathcal{D}'\left(\R^n\right)</math> given by <math>(f,T) \mapsto fT</math> is {{em|not}} continuous; it is however, [[hypocontinuous]].{{sfn|Trèves|2006|p=423}} '''Example.''' The product of any distribution <math>T</math> with the function that is identically {{math|1}} on <math>U</math> is equal to <math>T.</math> '''Example.''' Suppose <math>(f_i)_{i=1}^\infty</math> is a sequence of test functions on <math>U</math> that converges to the constant function <math>1 \in C^\infty(U).</math> For any distribution <math>T</math> on <math>U,</math> the sequence <math>(f_i T)_{i=1}^\infty</math> converges to <math>T \in \mathcal{D}'(U).</math>{{sfn|Trèves|2006|p=261}} If <math>(T_i)_{i=1}^\infty</math> converges to <math>T \in \mathcal{D}'(U)</math> and <math>(f_i)_{i=1}^\infty</math> converges to <math>f \in C^\infty(U)</math> then <math>(f_i T_i)_{i=1}^\infty</math> converges to <math>fT \in \mathcal{D}'(U).</math> =====Problem of multiplying distributions===== It is easy to define the product of a distribution with a smooth function, or more generally the product of two distributions whose [[singular support]]s are disjoint.<ref name="StackOverflow">{{cite web|url=https://math.stackexchange.com/q/2338283|title=Multiplication of two distributions whose singular supports are disjoint|date=Jun 27, 2017|publisher=Stack Exchange Network|author=Per Persson (username: md2perpe)}}</ref> With more effort, it is possible to define a well-behaved product of several distributions provided their [[wave front set]]s at each point are compatible. A limitation of the theory of distributions (and hyperfunctions) is that there is no associative product of two distributions extending the product of a distribution by a smooth function, as has been proved by [[Laurent Schwartz]] in the 1950s. For example, if <math>\operatorname{p.v.} \frac{1}{x}</math> is the distribution obtained by the [[Cauchy principal value]] <math display=block>\left(\operatorname{p.v.} \frac{1}{x}\right)(\phi) = \lim_{\varepsilon\to 0^+} \int_{|x| \geq \varepsilon} \frac{\phi(x)}{x}\, dx \quad \text{ for all } \phi \in \mathcal{S}(\R).</math> If <math>\delta</math> is the Dirac delta distribution then <math display=block>(\delta \times x) \times \operatorname{p.v.} \frac{1}{x} = 0</math> but, <math display=block>\delta \times \left(x \times \operatorname{p.v.} \frac{1}{x}\right) = \delta</math> so the product of a distribution by a smooth function (which is always well-defined) cannot be extended to an [[Associativity|associative]] product on the space of distributions. Thus, nonlinear problems cannot be posed in general and thus are not solved within distribution theory alone. In the context of [[quantum field theory]], however, solutions can be found. In more than two spacetime dimensions the problem is related to the [[Regularization (physics)|regularization]] of [[Ultraviolet divergence|divergences]]. Here [[Henri Epstein]] and [[Vladimir Glaser]] developed the mathematically rigorous (but extremely technical) {{em|[[causal perturbation theory]]}}. This does not solve the problem in other situations. Many other interesting theories are non-linear, like for example the [[Navier–Stokes equations]] of [[fluid dynamics]]. Several not entirely satisfactory{{Citation needed|reason=Why are they not satisfactory?|date=July 2019}} theories of [[Algebra (ring theory)|algebra]]s of [[generalized function]]s have been developed, among which [[Colombeau algebra|Colombeau's (simplified) algebra]] is maybe the most popular in use today. Inspired by Lyons' [[rough path]] theory,<ref>{{Cite journal|last1=Lyons|first1=T.|title=Differential equations driven by rough signals|doi=10.4171/RMI/240|journal=Revista Matemática Iberoamericana|pages=215–310|year=1998|volume=14 |issue=2 |doi-access=free}}</ref> [[Martin Hairer]] proposed a consistent way of multiplying distributions with certain structures ([[regularity structures]]<ref>{{cite journal|last1=Hairer|first1=Martin|title=A theory of regularity structures|journal=Inventiones Mathematicae|date=2014|doi=10.1007/s00222-014-0505-4|volume=198|issue=2|pages=269–504|bibcode=2014InMat.198..269H|arxiv=1303.5113|s2cid=119138901 }}</ref>), available in many examples from stochastic analysis, notably stochastic partial differential equations. See also Gubinelli–Imkeller–Perkowski (2015) for a related development based on [[Jean-Michel Bony|Bony]]'s [[paraproduct]] from Fourier analysis.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)