Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Sources=== {{refbegin}} *{{AS ref|17|587}} *{{cite book |last1=Byrd|first1=P. F.|last2=Friedman|first2=M.D.|date=1971|title=Handbook of Elliptic Integrals for Engineers and Scientists|publisher=Springer-Verlag|location=New York|edition=2nd|isbn=0-387-05318-2}} *{{cite journal | first=B. C. | last=Carlson | year=1995 | journal=Numerical Algorithms | title=Numerical Computation of Real or Complex Elliptic Integrals | volume=10 | issue=1 | pages=13–26 | arxiv=math/9409227 | bibcode=1995NuAlg..10...13C | doi=10.1007/BF02198293 | s2cid=11580137 }} *{{dlmf|first=B. C.|last=Carlson|id=19}} *{{cite book | url=http://apps.nrbook.com/bateman/Vol2.pdf | title=Higher transcendental functions. Vol II | last2=Magnus | first2=Wilhelm | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | year=1953 | mr=0058756 | last1=Erdélyi | first1=Arthur | author2-link=Wilhelm Magnus | access-date=2016-07-24 | archive-date=2011-07-14 | archive-url=https://web.archive.org/web/20110714210423/http://apps.nrbook.com/bateman/Vol2.pdf | url-status=dead }} *{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=en |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21 --> |title-link=Gradshteyn and Ryzhik |chapter=8.1. }} * {{cite book | first=Alfred George | last=Greenhill | author-link=Alfred George Greenhill | url=https://archive.org/details/applicationselli00greerich | title=The applications of elliptic functions | location=New York | publisher=Macmillan | year=1892 }} *{{cite book | last=Hancock | first=Harris | author-link=Harris Hancock | year=1910 | title=Lectures on the Theory of Elliptic Functions | url=https://archive.org/details/lecturestheorell00hancrich | publisher=J. Wiley & sons | location=New York }} *{{cite book | first=Louis V. | last=King | url=https://archive.org/details/onthenumerical032686mbp | title=On The Direct Numerical Calculation Of Elliptic Functions And Integrals | publisher=Cambridge University Press | year=1924 }} * {{Citation | last1=Press | first1=W. H. | last2=Teukolsky | first2=S. A. | last3=Vetterling | first3=W. T. | last4=Flannery | first4=B. P. | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 6.12. Elliptic Integrals and Jacobian Elliptic Functions | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=309 | access-date=2011-08-09 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=309 | url-status=dead }} {{refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)