Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Divisibility properties === Every third number of the sequence is even (a multiple of <math>F_3=2</math>) and, more generally, every {{mvar|k}}-th number of the sequence is a multiple of ''F<sub>k</sub>''. Thus the Fibonacci sequence is an example of a [[divisibility sequence]]. In fact, the Fibonacci sequence satisfies the stronger divisibility property<ref>{{Citation | first = Paulo | last = Ribenboim | author-link = Paulo Ribenboim | title = My Numbers, My Friends | publisher = Springer-Verlag | year = 2000}}</ref><ref>{{Citation | last1 = Su | first1 = Francis E | others = et al | publisher = HMC | url = http://www.math.hmc.edu/funfacts/ffiles/20004.5.shtml | contribution = Fibonacci GCD's, please | year = 2000 | title = Mudd Math Fun Facts | access-date = 2007-02-23 | archive-url = https://web.archive.org/web/20091214092739/http://www.math.hmc.edu/funfacts/ffiles/20004.5.shtml | archive-date = 2009-12-14 | url-status = dead }}</ref> <math display=block>\gcd(F_a,F_b,F_c,\ldots) = F_{\gcd(a,b,c,\ldots)}\,</math> where {{math|gcd}} is the [[greatest common divisor]] function. (This relation is different if a different indexing convention is used, such as the one that starts the sequence with {{tmath|1=F_0 = 1}} and {{tmath|1=F_1 = 1}}.) In particular, any three consecutive Fibonacci numbers are pairwise [[Coprime integers|coprime]] because both <math>F_1=1</math> and <math>F_2 = 1</math>. That is, : <math>\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = \gcd(F_{n+1}, F_{n+2}) = 1</math> for every {{mvar|n}}. Every [[prime number]] {{mvar|p}} divides a Fibonacci number that can be determined by the value of {{mvar|p}} [[modular arithmetic|modulo]] 5. If {{mvar|p}} is congruent to 1 or 4 modulo 5, then {{mvar|p}} divides {{math|''F''<sub>''p''β1</sub>}}, and if {{mvar|p}} is congruent to 2 or 3 modulo 5, then, {{mvar|p}} divides {{math|''F''<sub>''p''+1</sub>}}. The remaining case is that {{math|1=''p'' = 5}}, and in this case {{mvar|p}} divides ''F<sub>p</sub>''. <math display=block>\begin{cases} p =5 & \Rightarrow p \mid F_{p}, \\ p \equiv \pm1 \pmod 5 & \Rightarrow p \mid F_{p-1}, \\ p \equiv \pm2 \pmod 5 & \Rightarrow p \mid F_{p+1}.\end{cases}</math> These cases can be combined into a single, non-[[piecewise]] formula, using the [[Legendre symbol]]:<ref>{{citation | last = Williams | first = H. C. | doi = 10.4153/CMB-1982-053-0 | doi-access=free | issue = 3 | journal = [[Canadian Mathematical Bulletin]] | mr = 668957 | pages = 366β70 | title = A note on the Fibonacci quotient <math>F_{p-\varepsilon}/p</math> | volume = 25 | year = 1982| hdl = 10338.dmlcz/137492 | hdl-access = free }}. Williams calls this property "well known".</ref> <math display=block>p \mid F_{p \;-\, \left(\frac{5}{p}\right)}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)