Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fuzzy logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Gödel G<sub>∞</sub> logic=== {{further|Many-valued logic#Gödel logics Gk and G∞}} Another logical system where truth values are real numbers between 0 and 1 and where AND & OR operators are replaced with MIN and MAX is Gödel's G<sub>∞</sub> logic. This logic has many similarities with fuzzy logic but defines negation differently and has an internal implication. Negation <math>\neg_G</math> and implication <math>\xrightarrow[G]{}</math> are defined as follows: : <math>\begin{align} \neg_G u &= \begin{cases} 1, & \text{if }u = 0 \\ 0, & \text{if }u > 0 \end{cases} \\[3pt] u \mathrel{\xrightarrow[G]{}} v &= \begin{cases} 1, & \text{if }u \leq v \\ v, & \text{if }u > v \end{cases} \end{align}</math> which turns the resulting logical system into a model for [[intuitionistic logic]], making it particularly well-behaved among all possible choices of logical systems with real numbers between 0 and 1 as truth values. In this case, implication may be interpreted as "x is less true than y" and negation as "x is less true than 0" or "x is strictly false", and for any <math>x</math> and <math>y</math>, we have that <math> AND(x, x \mathrel{\xrightarrow[G]{}} y) = AND(x,y) </math>. In particular, in Gödel logic negation is no longer an involution and double negation maps any nonzero value to 1.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)