Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Groupoid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Groupoids in Grpd === {{Main|Double groupoid}} There is an additional structure which can be derived from groupoids internal to the category of groupoids, '''double-groupoids'''.<ref>{{cite arXiv|last1=Cegarra|first1=Antonio M.|last2=Heredia|first2=Benjamín A.|last3=Remedios|first3=Josué|date=2010-03-19|title=Double groupoids and homotopy 2-types|class=math.AT|eprint=1003.3820}}</ref><ref>{{Cite journal|last=Ehresmann|first=Charles|date=1964|title=Catégories et structures : extraits|url=http://www.numdam.org/item/?id=SE_1964__6__A8_0|journal=Séminaire Ehresmann. Topologie et géométrie différentielle|language=en|volume=6|pages=1–31}}</ref> Because '''Grpd''' is a 2-category, these objects form a 2-category instead of a 1-category since there is extra structure. Essentially, these are groupoids <math>\mathcal{G}_1,\mathcal{G}_0</math> with functors<blockquote><math>s,t: \mathcal{G}_1 \to \mathcal{G}_0</math></blockquote>and an embedding given by an identity functor<blockquote><math>i:\mathcal{G}_0 \to\mathcal{G}_1</math></blockquote>One way to think about these 2-groupoids is they contain objects, morphisms, and squares which can compose together vertically and horizontally. For example, given squares<blockquote><math>\begin{matrix} \bullet & \to & \bullet \\ \downarrow & & \downarrow \\ \bullet & \xrightarrow{a} & \bullet \end{matrix} </math> and <math>\begin{matrix} \bullet & \xrightarrow{a} & \bullet \\ \downarrow & & \downarrow \\ \bullet & \to & \bullet \end{matrix}</math></blockquote>with <math>a</math> the same morphism, they can be vertically conjoined giving a diagram<blockquote><math>\begin{matrix} \bullet & \to & \bullet \\ \downarrow & & \downarrow \\ \bullet & \xrightarrow{a} & \bullet \\ \downarrow & & \downarrow \\ \bullet & \to & \bullet \end{matrix}</math></blockquote>which can be converted into another square by composing the vertical arrows. There is a similar composition law for horizontal attachments of squares.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)