Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Habitat fragmentation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Sustainable forest management === The presence of forest fragments influences the supply of various [[ecosystem]]s in adjacent [[Agriculture|agricultural]] fields (Mitchell et al. 2014). Mitchell et al. (2014), researched on six varying ecosystem factors such as crop production, [[decomposition]], [[pesticide regulation]], carbon storage, [[soil fertility]], and water quality regulation in soybean fields through separate distances by nearby forest fragments which all varied in isolation and size across an agricultural landscape in [[Quebec|Quebec, Canada]]. Sustainable forest management can be achieved in several ways including by managing forests for [[ecosystem service]]s (beyond simple provisioning), through government compensation schemes, and through effective regulation and legal frameworks.<ref>{{Citation|title=Chapter 23 - Sustainable Forest Management|date=2019-01-01|url=https://repozitorij.uni-lj.si/IzpisGradiva.php?id=36180|journal=Sustainable Food and Agriculture|pages=233–236|editor-last=Campanhola|editor-first=Clayton|publisher=Academic Press|doi=10.1016/B978-0-12-812134-4.00023-6|language=en|isbn=978-0-12-812134-4|s2cid=128938268|editor2-last=Pandey|editor2-first=Shivaji|url-access=subscription}}</ref> The only realistic method of conserving forests is to apply and practice sustainable [[forest management]] to risk further loss. There is a high industrial demand for [[wood]], [[Pulp (paper)|pulp]], [[paper]], and other resources which the [[forest]] can provide with, thus businesses which will want more access to the cutting of forests to gain those resources. The [[Rainforest Alliance|rainforest alliance]] has efficiently been able to put into place an approach to sustainable forest management, and they established this in the late 1980s. Their [[Conservation biology|conservation]] was deemed successful as it has saved over nearly half a billion acres of land around the world.<ref name="What is Sustainable Forestry">{{Cite web|url=https://www.rainforest-alliance.org/articles/what-is-sustainable-forestry|title=What is Sustainable Forestry?|website=Rainforest Alliance|date=28 July 2016|language=en|access-date=2020-03-06}}</ref> A few approaches and measures which can be taken in order to conserve forests are methods by which erosion can be minimized, waste is properly disposed, conserve native [[tree]] species to maintain [[genetic diversity]], and setting aside forestland (provides habitat for critical [[Species|wildlife species]]).<ref name="What is Sustainable Forestry" /> Additionally, [[Wildfire|forest fires]] can also occur frequently and measures can also be taken to further prevent forest fires from occurring. For example, in [[Guatemala]]’s culturally and ecologically significant [[Petén Department|Petén]] region, researchers were able to find over a 20-year period, actively managed [[Forest Stewardship Council|FSC]]-certified forests experienced substantially lower rates of [[deforestation]] than nearby protected areas, and forest fires only affected 0.1 percent of certified land area, compared to 10.4 percent of protected areas.<ref name="What is Sustainable Forestry" /> However, it must be duly noted that short term decisions regarding forest sector employment and harvest practices can have long-term effects on biodiversity.<ref>{{Cite web|url=https://www.fs.fed.us/nrs/pubs/gtr/gtr_nrs90/gtr-nrs-90-chapter-4.pdf|title=Strategies for Sustainable Forest Management|website=fed.us}}</ref> Planted forests become increasingly important as they supply approximately a quarter of global industrial roundwood production and are predicted to account for 50% of global output within two decades (Brown, 1998; Jaakko Poyry, 1999).<ref>{{Cite journal|last1=Siry|first1=Jacek P.|last2=Cubbage|first2=Frederick W.|last3=Ahmed|first3=Miyan Rukunuddin|date=2005-05-01|title=Sustainable forest management: global trends and opportunities|journal=Forest Policy and Economics|language=en|volume=7|issue=4|pages=551–561|doi=10.1016/j.forpol.2003.09.003|bibcode=2005ForPE...7..551S |issn=1389-9341}}</ref> Although there have been many difficulties, the implementation of forest certification has been quite prominent in being able to raise effective awareness and disseminating knowledge on a holistic concept, embracing economic, environmental and social issues, worldwide. While also providing a tool for a range of other applications than assessment of [[sustainability]], such as e.g. verifying [[Carbon sink|carbon sinks.]]<ref>{{Cite journal|last1=Rametsteiner|first1=Ewald|last2=Simula|first2=Markku|date=2003-01-01|title=Forest certification—an instrument to promote sustainable forest management?|journal=Journal of Environmental Management|series=Maintaining Forest Biodiversity|language=en|volume=67|issue=1|pages=87–98|doi=10.1016/S0301-4797(02)00191-3|pmid=12659807|bibcode=2003JEnvM..67...87R |issn=0301-4797}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)