Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Hyperbolic functions for complex numbers== {| style="text-align:center" |+ Hyperbolic functions in the complex plane |[[Image:Complex Sinh.jpg|1000x140px|none]] |[[Image:Complex Cosh.jpg|1000x140px|none]] |[[Image:Complex Tanh.jpg|1000x140px|none]] |[[Image:Complex Coth.jpg|1000x140px|none]] |[[Image:Complex Sech.jpg|1000x140px|none]] |[[Image:Complex Csch.jpg|1000x140px|none]] |- |<math>\sinh(z)</math> |<math>\cosh(z)</math> |<math>\tanh(z)</math> |<math>\coth(z)</math> |<math>\operatorname{sech}(z)</math> |<math>\operatorname{csch}(z)</math> |} Since the [[exponential function]] can be defined for any [[complex number|complex]] argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions {{math|sinh ''z''}} and {{math|cosh ''z''}} are then [[Holomorphic function|holomorphic]]. Relationships to ordinary trigonometric functions are given by [[Euler's formula]] for complex numbers: <math display="block">\begin{align} e^{i x} &= \cos x + i \sin x \\ e^{-i x} &= \cos x - i \sin x \end{align}</math> so: <math display="block">\begin{align} \cosh(ix) &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\ \sinh(ix) &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\ \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\ \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\ \tanh(ix) &= i \tan x \\ \cosh x &= \cos(ix) \\ \sinh x &= - i \sin(ix) \\ \tanh x &= - i \tan(ix) \end{align}</math> Thus, hyperbolic functions are [[periodic function|periodic]] with respect to the imaginary component, with period <math>2 \pi i</math> (<math>\pi i</math> for hyperbolic tangent and cotangent).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)