Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Legendre transformation on manifolds== Let <math display="inline">M</math> be a [[smooth manifold]], let <math>E</math> and <math display="inline">\pi : E\to M</math> be a [[vector bundle]] on <math>M</math> and its associated [[bundle projection]], respectively. Let <math display="inline">L : E\to \R</math> be a smooth function. We think of <math display="inline">L</math> as a [[Lagrangian mechanics|Lagrangian]] by analogy with the classical case where <math display="inline">M = \R</math>, <math display="inline">E = TM = \Reals \times \Reals </math> and <math display="inline">L(x,v) = \frac 1 2 m v^2 - V(x)</math> for some positive number <math display="inline">m\in \Reals</math> and function <math display="inline">V : M \to \Reals</math>. As usual, the [[dual bundle|dual]] of <math display="inline">E</math> is denote by <math display="inline">E^*</math>. The fiber of <math display="inline">\pi</math> over <math display="inline">x\in M</math> is denoted <math display="inline">E_x</math>, and the restriction of <math display="inline">L</math> to <math display="inline">E_x</math> is denoted by <math display="inline">L|_{E_x} : E_x\to \R</math>. The ''Legendre transformation'' of <math display="inline">L</math> is the smooth morphism<math display="block">\mathbf F L : E \to E^*</math> defined by <math display="inline">\mathbf FL(v) = d(L|_{E_x})_v \in E_x^*</math>, where <math display="inline">x = \pi(v)</math>. Here we use the fact that since <math display="inline">E_x</math> is a vector space, <math display="inline">T_v(E_x)</math> can be identified with <math display="inline">E_x</math>. In other words, <math display="inline">\mathbf FL(v)\in E_x^*</math> is the covector that sends <math display="inline">w\in E_x</math> to the directional derivative <math display="inline">\left.\frac d {dt}\right|_{t=0} L(v + tw)\in \R</math>. To describe the Legendre transformation locally, let <math display="inline">U\subseteq M</math> be a coordinate chart over which <math display="inline">E</math> is trivial. Picking a trivialization of <math display="inline">E</math> over <math display="inline">U</math>, we obtain charts <math display="inline">E_U \cong U \times \R^r</math> and <math display="inline">E_U^* \cong U \times \R^r</math>. In terms of these charts, we have <math display="inline">\mathbf FL(x; v_1, \dotsc, v_r) = (x; p_1,\dotsc, p_r)</math>, where <math display="block">p_i = \frac {\partial L}{\partial v_i}(x; v_1, \dotsc, v_r)</math> for all <math display="inline">i = 1, \dots, r</math>. If, as in the classical case, the restriction of <math display="inline">L : E\to \mathbb R</math> to each fiber <math display="inline">E_x</math> is strictly convex and bounded below by a positive definite quadratic form minus a constant, then the Legendre transform <math display="inline">\mathbf FL : E\to E^*</math> is a diffeomorphism.<ref name="CdS2008">Ana Cannas da Silva. ''Lectures on Symplectic Geometry'', Corrected 2nd printing. Springer-Verlag, 2008. pp. 147-148. {{ISBN|978-3-540-42195-5}}.</ref> Suppose that <math display="inline">\mathbf FL</math> is a diffeomorphism and let <math display="inline">H : E^* \to \R</math> be the "[[Hamiltonian mechanics|Hamiltonian]]" function defined by <math display="block">H(p) = p \cdot v - L(v),</math> where <math display="inline">v = (\mathbf FL)^{-1}(p)</math>. Using the natural isomorphism <math display="inline">E\cong E^{**}</math>, we may view the Legendre transformation of <math display="inline">H</math> as a map <math display="inline">\mathbf FH : E^* \to E</math>. Then we have<ref name="CdS2008"/> <math display="block">(\mathbf FL)^{-1} = \mathbf FH.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)