Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lie algebra representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== *Bernstein I.N., Gelfand I.M., Gelfand S.I., "Structure of Representations that are generated by vectors of highest weight," Functional. Anal. Appl. 5 (1971) *{{citation|last=Dixmier|first=J.|title=Enveloping Algebras|publisher=North-Holland|location=Amsterdam, New York, Oxford|year=1977|isbn=0-444-11077-1}}. *A. Beilinson and J. Bernstein, "Localisation de g-modules," Comptes Rendus de l'Académie des Sciences, Série I, vol. 292, iss. 1, pp. 15–18, 1981. *{{cite book|last1=Bäuerle|first1=G.G.A|last2=de Kerf|first2=E.A.|title=Finite and infinite dimensional Lie algebras and their application in physics|year=1990|series=Studies in mathematical physics|volume=1|editor1=A. van Groesen|editor2=E.M. de Jager|publisher=North-Holland|isbn=0-444-88776-8}} *{{cite book|last1=Bäuerle|first1=G.G.A|last2=de Kerf|first2=E.A.|last3=ten Kroode|first3=A.P.E.|title=Finite and infinite dimensional Lie algebras and their application in physics|year=1997|series=Studies in mathematical physics|volume=7|editor1=A. van Groesen|editor2=E.M. de Jager|publisher=North-Holland|isbn=978-0-444-82836-1|url=http://www.sciencedirect.com/science/bookseries/09258582|via=[[ScienceDirect]]|url-access=subscription }} *{{cite book|last1=Fulton|first1=W.|authorlink1=William Fulton (mathematician)|last2=Harris|first2=J.|authorlink2=Joe Harris (mathematician)|year=1991|title=Representation theory. A first course|series=Graduate Texts in Mathematics|volume=129|location=New York|publisher=Springer-Verlag|isbn=978-0-387-97495-8|mr=1153249}} * D. Gaitsgory, [https://web.archive.org/web/20141123183220/http://www.math.harvard.edu/~gaitsgde/267y/index.html Geometric Representation theory, Math 267y, Fall 2005] *{{citation|first=Brian C.|last=Hall|title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267 |publisher=Springer|year=2013| isbn=978-1461471158}} * {{Citation| last=Hall|first=Brian C.|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666}} *{{citation|last=Rossmann|first= Wulf|title=Lie Groups - An Introduction Through Linear Groups|publisher=Oxford Science Publications|year=2002|series=Oxford Graduate Texts in Mathematics|isbn=0-19-859683-9|postscript=<!--none-->}} * Ryoshi Hotta, Kiyoshi Takeuchi, Toshiyuki Tanisaki, ''D-modules, perverse sheaves, and representation theory''; translated by Kiyoshi Takeuch * {{Citation| last=Humphreys|first=James|title=Introduction to Lie Algebras and Representation Theory|series=Graduate Texts in Mathematics|volume=9|publisher=Springer|year=1972|url=https://books.google.com/books?id=TeMlBQAAQBAJ&q=%22Introduction+to+Lie+Algebras+and+Representation+Theory%22|isbn=9781461263982}} * {{cite book |last=Jacobson |first=Nathan |author-link=Nathan Jacobson |title=Lie algebras |orig-year=1962 |publisher=Dover |year=1979 |isbn=978-0-486-63832-4 |ref={{harvid|Jacobson|1962}}}} * {{cite journal | author1=Garrett Birkhoff|authorlink1=Garrett Birkhoff |author2= Philip M. Whitman |authorlink2=Philip M. Whitman | title=Representation of Jordan and Lie Algebras | journal=[[Trans. Amer. Math. Soc.]] | volume=65 | pages=116–136 | url=https://www.ams.org/tran/1949-065-01/S0002-9947-1949-0029366-6/S0002-9947-1949-0029366-6.pdf | year=1949 | doi=10.1090/s0002-9947-1949-0029366-6| doi-access=free }} *{{cite book|last=Kirillov|first=A.|title=An Introduction to Lie Groups and Lie Algebras|year=2008|isbn=978-0521889698|publisher=Cambridge University Press|series=Cambridge Studies in Advanced Mathematics|volume=113|url=https://books.google.com/books?id=-Z3cDQAAQBAJ&q=Introduction+to+Lie+groups+and+Lie+algebras}} *{{citation|first=Anthony W.|last= Knapp| title=Representation theory of semisimple groups. An overview based on examples. |series=Princeton Landmarks in Mathematics|publisher=Princeton University Press|year=2001|isbn=0-691-09089-0|author-link=Anthony W. Knapp|postscript=<!--none-->|url=https://books.google.com/books?id=QCcW1h835pwC&q=%22Lie+algebra%22}} (elementary treatment for SL(2,'''C''')) *{{citation|first=Anthony W.|last= Knapp| title=Lie Groups Beyond and Introduction|edition=second|publisher=Birkhauser|year=2002}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)