Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Functions on metric spaces== Suppose {{mvar|M}} and {{mvar|N}} are subsets of [[metric spaces]] {{mvar|A}} and {{mvar|B}}, respectively, and {{math|''f'' : ''M'' β ''N''}} is defined between {{mvar|M}} and {{mvar|N}}, with {{math|''x'' β ''M''}}, {{mvar|p}} a [[limit point]] of {{mvar|M}} and {{math|''L'' β ''N''}}. It is said that '''the limit of {{mvar|f}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|L}}''' and write <math display=block> \lim_{x \to p}f(x) = L </math> if the following property holds: {{block indent|For every {{math|''Ξ΅'' > 0}}, there exists a {{math|''Ξ΄'' > 0}} such that for all points {{math|''x'' β ''M''}}, {{math|0 < ''d<sub>A</sub>''(''x'', ''p'') < ''Ξ΄''}} implies {{math|''d<sub>B</sub>''(''f''(''x''), ''L'') < ''Ξ΅''}}.<ref>{{citation | last = Rudin | first = W. | url = http://worldcat.org/oclc/962920758 | title = Principles of mathematical analysis | date = 1986 | publisher = McGraw - Hill Book C | pages = 84 | oclc = 962920758}}</ref>}} <math display=block>(\forall \varepsilon > 0 )\, (\exists \delta > 0) \,(\forall x \in M) \,(0 < d_A(x, p) < \delta \implies d_B(f(x), L) < \varepsilon).</math> Again, note that {{mvar|p}} need not be in the domain of {{mvar|f}}, nor does {{mvar|L}} need to be in the range of {{mvar|f}}, and even if {{math|''f''(''p'')}} is defined it need not be equal to {{mvar|L}}. ===Euclidean metric=== The limit in [[Euclidean space]] is a direct generalization of limits to [[vector-valued functions]]. For example, we may consider a function <math>f:S \times T \to \R^3</math> such that <math display=block>f(x, y) = (f_1(x, y), f_2(x, y), f_3(x, y) ).</math> Then, under the usual [[Euclidean metric]], <math display=block>\lim_{(x, y) \to (p, q)} f(x, y) = (L_1, L_2, L_3)</math> if the following holds: {{block indent|For every {{math|''Ξ΅'' > 0}}, there exists a {{math|''Ξ΄'' > 0}} such that for all {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, <math display=inline>0 < \sqrt{(x-p)^2 + (y-q)^2} < \delta</math> implies <math display=inline>\sqrt{(f_1-L_1)^2 + (f_2-L_2)^2 + (f_3-L_3)^2} < \varepsilon.</math><ref name="Hartman">{{citation | last = Hartman | first = Gregory | url = https://math.libretexts.org/Courses/Georgia_State_University_-_Perimeter_College/MATH_2215%3A_Calculus_III/13%3A_Vector-valued_Functions/The_Calculus_of_Vector-Valued_Functions_II | date = 2019 | title = The Calculus of Vector-Valued Functions II | language = en | access-date = 2022-10-31}}</ref>}} <math display=block>(\forall \varepsilon > 0 )\, (\exists \delta > 0) \, (\forall x \in S) \, (\forall y \in T)\, \left(0 < \sqrt{(x-p)^2+(y-q)^2} < \delta \implies \sqrt{(f_1-L_1)^2 + (f_2-L_2)^2 + (f_3-L_3)^2} < \varepsilon \right).</math> In this example, the function concerned are finite-[[Dimension (vector space)|dimension]] vector-valued function. In this case, the '''limit theorem for vector-valued function''' states that if the limit of each component exists, then the limit of a vector-valued function equals the vector with each component taken the limit:<ref name="Hartman" /> <math display=block>\lim_{(x, y) \to (p, q)} \Bigl(f_1(x, y), f_2(x, y), f_3(x, y)\Bigr) = \left(\lim_{(x, y) \to (p, q)}f_1(x, y), \lim_{(x, y) \to (p, q)}f_2(x, y), \lim_{(x, y) \to (p, q)}f_3(x, y)\right).</math> ===Manhattan metric=== One might also want to consider spaces other than Euclidean space. An example would be the Manhattan space. Consider <math>f:S \to \R^2</math> such that <math display=block>f(x) = (f_1(x), f_2(x)).</math> Then, under the [[Manhattan metric]], <math display=block>\lim_{x \to p} f(x) = (L_1, L_2)</math> if the following holds: {{block indent|For every {{math|''Ξ΅'' > 0}}, there exists a {{math|''Ξ΄'' > 0}} such that for all {{mvar|x}} in {{mvar|S}}, {{math|0 < {{!}}''x'' β ''p''{{!}} < ''Ξ΄''}} implies {{math|{{!}}''f''<sub>1</sub> β ''L''<sub>1</sub>{{!}} + {{!}}''f''<sub>2</sub> β ''L''<sub>2</sub>{{!}} < ''Ξ΅''}}.}} <math display=block>(\forall \varepsilon > 0 )\, (\exists \delta > 0) \,(\forall x \in S) \,(0 < |x - p| < \delta \implies |f_1 - L_1| + |f_2 - L_2| < \varepsilon).</math> Since this is also a finite-dimension vector-valued function, the limit theorem stated above also applies.{{sfnp|Zakon|2011|p=172}} ===Uniform metric=== Finally, we will discuss the limit in [[function space]], which has infinite dimensions. Consider a function {{math|''f''(''x'', ''y'')}} in the function space <math>S \times T \to \R.</math> We want to find out as {{mvar|x}} approaches {{mvar|p}}, how {{math|''f''(''x'', ''y'')}} will tend to another function {{math|''g''(''y'')}}, which is in the function space <math>T \to \R.</math> The "closeness" in this function space may be measured under the [[uniform metric]].<ref>{{citation | last = Rudin | first = W | url = http://worldcat.org/oclc/962920758 | title = Principles of mathematical analysis | date = 1986 | publisher = McGraw - Hill Book C | pages = 150β151 | oclc = 962920758}}</ref> Then, we will say '''the uniform limit of {{mvar|f}} on {{mvar|T}} as {{mvar|x}} approaches {{mvar|p}} is {{mvar|g}}''' and write <math display=block>\underset{ {x \to p} \atop {y \in T} }{\mathrm{unif} \lim \;} f(x, y) = g(y),</math> or <math display=block>\lim_{x \to p}f(x, y) = g(y) \;\; \text{uniformly on} \; T,</math> if the following holds: {{block indent|For every {{math|''Ξ΅'' > 0}}, there exists a {{math|''Ξ΄'' > 0}} such that for all {{mvar|x}} in {{mvar|S}}, {{math|0 < {{!}}''x'' β ''p''{{!}} < ''Ξ΄''}} implies <math>\sup_{y \in T}|f(x,y) - g(y)| < \varepsilon.</math>}} <math display=block>(\forall \varepsilon > 0 )\, (\exists \delta > 0) \,(\forall x \in S) \,(0 < |x-p| < \delta \implies \sup_{y \in T} | f(x, y) - g(y) | < \varepsilon).</math> In fact, one can see that this definition is equivalent to that of the uniform limit of a multivariable function introduced in the previous section.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)