Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Occam's razor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Mathematical arguments against Occam's razor ==== {{Technical|date=February 2024|section}} The [[No free lunch theorem|no free lunch]] (NFL) theorems for inductive inference prove that Occam's razor must rely on ultimately arbitrary assumptions concerning the prior probability distribution found in our world.<ref name="Adam2019">Adam, S., and Pardalos, P. (2019), [https://www.researchgate.net/profile/Stamatios-Aggelos-Alexandropoulos-2/publication/333007007_No_Free_Lunch_Theorem_A_Review/links/5e84f65792851c2f52742c85/No-Free-Lunch-Theorem-A-Review.pdf No-free lunch Theorem: A review], in "Approximation and Optimization", Springer, 57-82</ref> Specifically, suppose one is given two inductive inference algorithms, A and B, where A is a [[Bayesian inference|Bayesian]] procedure based on the choice of some prior distribution motivated by Occam's razor (e.g., the prior might favor hypotheses with smaller [[Kolmogorov complexity]]). Suppose that B is the anti-Bayes procedure, which calculates what the Bayesian algorithm A based on Occam's razor will predict β and then predicts the exact opposite. Then there are just as many actual priors (including those different from the Occam's razor prior assumed by A) in which algorithm B outperforms A as priors in which the procedure A based on Occam's razor comes out on top. In particular, the NFL theorems show that the "Occam factors" Bayesian argument for Occam's razor must make ultimately arbitrary modeling assumptions.<ref name="WOLP95">Wolpert, D.H (1995), On the Bayesian "Occam Factors" Argument for Occam's Razor, in "Computational Learning Theory and Natural Learning Systems: Selecting Good Models", MIT Press</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)