Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
P-adic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Further reading == {{refbegin}} * {{Citation |last=Bachman |first=George |title=Introduction to ''p''-adic Numbers and Valuation Theory |year=1964 |publisher=Academic Press |isbn=0-12-070268-1}} * {{Citation|last1=Borevich|first1=Z. I.|author-link1=Zenon Ivanovich Borevich|last2=Shafarevich|first2=I. R.|author2-link=Igor Rostislavovich Shafarevich|year=1986|title=Number Theory|publisher=Academic Press|location=Boston, MA|series=Pure and Applied Mathematics|volume=20|isbn=978-0-12-117851-2|url={{Google books|njgVUjjO-EAC|Number Theory|plainurl=yes}}|mr=0195803}} * {{Citation |last=Koblitz |first=Neal |author-link=Neal Koblitz |year=1984 | series=[[Graduate Texts in Mathematics]] | volume=58 | title=''p''-adic Numbers, ''p''-adic Analysis, and Zeta-Functions | edition=2nd |publisher=Springer |isbn=0-387-96017-1}} * {{Citation | last=Mahler | first=Kurt | author-link=Kurt Mahler | title=''p''-adic numbers and their functions | edition=2nd | zbl=0444.12013 | series=Cambridge Tracts in Mathematics | volume=76 | location=Cambridge | publisher=[[Cambridge University Press]] | year=1981 | isbn=0-521-23102-7 | url-access=registration | url=https://archive.org/details/padicnumbersthei0000mahl }} * {{Citation |last=Steen |first=Lynn Arthur |author-link=Lynn Arthur Steen |year=1978 |title=Counterexamples in Topology |publisher=Dover |isbn=0-486-68735-X|title-link=Counterexamples in Topology }} {{refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)