Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Hybrid quantum/classical algorithms== Hybrid Quantum/Classical Algorithms combine quantum state preparation and measurement with classical optimization.<ref>{{cite journal|last1=Moll|first1=Nikolaj|last2=Barkoutsos|first2=Panagiotis|last3=Bishop|first3=Lev S.|last4=Chow|first4=Jerry M.|last5=Cross|first5=Andrew|last6=Egger|first6=Daniel J.|last7=Filipp|first7=Stefan|last8=Fuhrer|first8=Andreas|last9=Gambetta|first9=Jay M.|last10=Ganzhorn|first10=Marc|last11=Kandala|first11=Abhinav|last12=Mezzacapo|first12=Antonio|last13=Müller|first13=Peter|last14=Riess|first14=Walter|last15=Salis|first15=Gian|last16=Smolin|first16=John|last17=Tavernelli|first17=Ivano|last18=Temme|first18=Kristan|title=Quantum optimization using variational algorithms on near-term quantum devices|journal=Quantum Science and Technology|date=2018|volume=3|issue=3|pages= 030503|doi=10.1088/2058-9565/aab822|arxiv=1710.01022|bibcode=2018QS&T....3c0503M|s2cid=56376912}}</ref> These algorithms generally aim to determine the ground-state eigenvector and eigenvalue of a Hermitian operator. === QAOA === The [[quantum approximate optimization algorithm]] takes inspiration from quantum annealing, performing a discretized approximation of quantum annealing using a quantum circuit. It can be used to solve problems in graph theory.<ref>{{cite arXiv |last1=Farhi |first1=Edward |last2=Goldstone |first2=Jeffrey |last3=Gutmann |first3=Sam |date=2014-11-14 |title=A Quantum Approximate Optimization Algorithm |eprint=1411.4028 |class=quant-ph}}</ref> The algorithm makes use of classical optimization of quantum operations to maximize an "objective function." === Variational quantum eigensolver === The [[variational quantum eigensolver]] (VQE) algorithm applies classical optimization to minimize the energy expectation value of an [[Ansatz|ansatz state]] to find the ground state of a Hermitian operator, such as a molecule's Hamiltonian.<ref>{{Cite journal |last1=Peruzzo |first1=Alberto |last2=McClean |first2=Jarrod |last3=Shadbolt |first3=Peter |last4=Yung |first4=Man-Hong |last5=Zhou |first5=Xiao-Qi |last6=Love |first6=Peter J. |last7=Aspuru-Guzik |first7=Alán |last8=O’Brien |first8=Jeremy L. |date=2014-07-23 |title=A variational eigenvalue solver on a photonic quantum processor |journal=Nature Communications |language=En |volume=5 |issue=1 |pages=4213 |arxiv=1304.3061 |bibcode=2014NatCo...5.4213P |doi=10.1038/ncomms5213 |issn=2041-1723 |pmc=4124861 |pmid=25055053}}</ref> It can also be extended to find excited energies of molecular Hamiltonians.<ref>{{cite journal|last1=Higgott|first1=Oscar|last2=Wang|first2=Daochen|last3=Brierley|first3=Stephen|title=Variational Quantum Computation of Excited States|journal=Quantum|year=2019|volume=3|pages=156|doi=10.22331/q-2019-07-01-156|arxiv=1805.08138|bibcode=2019Quant...3..156H |s2cid=119185497}}</ref> === Contracted quantum eigensolver === The contracted quantum eigensolver (CQE) algorithm minimizes the residual of a contraction (or projection) of the Schrödinger equation onto the space of two (or more) electrons to find the ground- or excited-state energy and two-electron reduced density matrix of a molecule.<ref>{{Cite journal|last1=Smart|first1=Scott|last2=Mazziotti|first2=David|date=2021-02-18|title=Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular Simulations on Quantum Computing Devices|journal=Phys. Rev. Lett.|language=En|volume=125|issue=7|pages=070504|doi=10.1103/PhysRevLett.126.070504|pmid=33666467|arxiv=2004.11416|bibcode=2021PhRvL.126g0504S|s2cid=216144443}}</ref> It is based on classical methods for solving energies and two-electron reduced density matrices directly from the anti-Hermitian contracted Schrödinger equation.<ref>{{Cite journal|last1=Mazziotti|first1=David|date=2006-10-06|title=Anti-Hermitian Contracted Schrödinger Equation: Direct Determination of the Two-Electron Reduced Density Matrices of Many-Electron Molecules|journal=Phys. Rev. Lett.|language=En|volume=97|issue=14|pages=143002|doi=10.1103/PhysRevLett.97.143002|pmid=17155245|bibcode=2006PhRvL..97n3002M}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)