Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Regular polyhedron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Petrie dual==== {{main|Petrie dual}} The [[Petrie dual]] of a regular polyhedron is a [[Regular map (graph theory)|regular map]] whose vertices and edges correspond to the vertices and edges of the original polyhedron, and whose faces are the set of [[skew polygon|skew]] [[Petrie polygon]]s.<ref>{{citation|title=Abstract Regular Polytopes|volume=92|series=Encyclopedia of Mathematics and its Applications|first1=Peter|last1=McMullen|first2=Egon|last2=Schulte|publisher=Cambridge University Press|year=2002|isbn=9780521814966|page=192|url=https://books.google.com/books?id=JfmlMYe6MJgC&pg=PA192}}</ref> {| class=wikitable |+ Regular petrials !Name !Petrial tetrahedron<BR> !Petrial cube !Petrial octahedron !Petrial dodecahedron !Petrial icosahedron |- align=center !Symbol |{3,3}<sup>{{pi}}</sup> |{4,3}<sup>{{pi}}</sup> |{3,4}<sup>{{pi}}</sup> |{5,3}<sup>{{pi}}</sup> |{3,5}<sup>{{pi}}</sup> |- align=center !(''v'',''e'',''f''), [[Euler characteristic|''χ'']] |(4,6,3), ''χ'' = 1||(8,12,4), ''χ'' = 0||(6,12,4), ''χ'' = β2||(20,30,6), ''χ'' = β4||(12,30,6), ''χ'' = β12 |- align=center !rowspan=2|Faces |rowspan=2|3 skew squares<br/>[[File:Face_of_petrial_tetrahedron.gif|120px]] |colspan=2 style="border-bottom-style:none;"|4 skew hexagons |colspan=2 style="border-bottom-style:none;"|6 skew decagons |- align=center |style="border-top-style:none;"|[[File:Face_of_petrial_cube.gif|120px]] |style="border-top-style:none;"|[[File:Face_of_petrial_octahedron.gif|120px]] |style="border-top-style:none;"|[[File:Face_of_petrial_dodecahedron.gif|120px]] |style="border-top-style:none;"|[[File:Face_of_petrial_icosahedron.gif|120px]] |- align=center !Image |[[File:Tetrahedron_3_petrie_polygons.png|120px]] |[[File:Cube_4_petrie_polygons.png|120px]] |[[File:Octahedron_4_petrie_polygons.png|120px]] |[[File:Petrial_dodecahedron.png|120px]] |[[File:petrial_icosahedron.png|120px]] |- align=center !Animation |[[File:Petrial_tetrahedron.gif|120px]] |[[File:Petrial_cube.gif|120px]] |[[File:Petrial octahedron.gif|120px]] |[[File:Petrial_dodecahedron.gif|120px]] |[[File:petrial_icosahedron.gif|120px]] |- align=center valign=bottom !Related<BR>figures |[[File:Hemicube.svg|120px]]<BR>{4,3}<sub>3</sub> = [[hemi-cube (geometry)|{4,3}/2]] = {4,3}<sub>(2,0)</sub> |[[File:Regular map 6-3 2-0.png|120px]]<BR>{6,3}<sub>3</sub> = {6,3}<sub>(2,0)</sub> |[[File:Regular_map_6_4-3_pattern.png|120px]]<BR>{6,4}<sub>3</sub> = {6,4}<sub>(4,0)</sub> |{10,3}<sub>5</sub> |{10,5}<sub>3</sub> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)