Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===''E''<sub>6</sub>, ''E''<sub>7</sub>, ''E''<sub>8</sub>=== {| class=wikitable width=675 center |[[File:E6Coxeter.svg|200px]]<BR>72 vertices of [[1 22 polytope|1<sub>22</sub>]] represent the root vectors of [[E6 (mathematics)|''E''<sub>6</sub>]]<BR>(Green nodes are doubled in this E6 Coxeter plane projection) |[[File:E7Petrie.svg|225px]]<BR>126 vertices of [[2 31 polytope|2<sub>31</sub>]] represent the root vectors of [[E7 (mathematics)|''E''<sub>7</sub>]] |[[File:E8 graph.svg|250px]]<BR>240 vertices of [[4 21 polytope|4<sub>21</sub>]] represent the root vectors of [[E8 (mathematics)|''E''<sub>8</sub>]] |- align=center |[[File:DynkinE6AltOrder.svg|200px]] |[[File:DynkinE7AltOrder.svg|225px]] |[[File:DynkinE8AltOrder.svg|250px]] |} *The ''E''<sub>8</sub> root system is any set of vectors in '''R'''<sup>8</sup> that is [[congruence (geometry)|congruent]] to the following set:<math display=block> D_8 \cup \left\{ \frac 1 2 \left( \sum_{i=1}^8 \varepsilon_i \mathbf e_i \right) : \varepsilon_i = \pm1, \, \varepsilon_1 \cdots \varepsilon_8 = +1 \right\}. </math> The root system has 240 roots. The set just listed is the set of vectors of length {{radic|2}} in the E8 root lattice, also known simply as the [[E8 lattice]] or Ξ<sub>8</sub>. This is the set of points in '''R'''<sup>8</sup> such that: # all the coordinates are [[integer]]s or all the coordinates are [[half-integer]]s (a mixture of integers and half-integers is not allowed), and # the sum of the eight coordinates is an [[even integer]]. Thus, <math display=block> E_8 = \left\{ \alpha\in\mathbb Z^8 \cup \left(\mathbb Z + \tfrac 1 2\right)^8 : |\alpha|^2 = \sum\alpha_i^2 = 2,\, \sum\alpha_i \in 2\mathbb Z. \right\} </math> * The root system ''E''<sub>7</sub> is the set of vectors in ''E''<sub>8</sub> that are perpendicular to a fixed root in ''E''<sub>8</sub>. The root system ''E''<sub>7</sub> has 126 roots. * The root system ''E''<sub>6</sub> is not the set of vectors in ''E''<sub>7</sub> that are perpendicular to a fixed root in ''E''<sub>7</sub>, indeed, one obtains ''D''<sub>6</sub> that way. However, ''E''<sub>6</sub> is the subsystem of ''E''<sub>8</sub> perpendicular to two suitably chosen roots of ''E''<sub>8</sub>. The root system ''E''<sub>6</sub> has 72 roots. {| style="text-align: right; border: 1px gray solid" cellspacing=0 |+ '''Simple roots in ''E''<sub>8</sub>: even coordinates''' |- | 1||β1||0||0||0||0||0||0 |- |0|| 1||β1||0||0||0||0||0 |- |0||0|| 1||β1||0||0||0||0 |- |0||0||0|| 1||β1||0||0||0 |- | 0||0||0||0|| 1||β1||0||0 |- |0||0||0||0||0|| 1||β1||0 |- |0||0||0||0||0||1|| 1||0 |- | β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} |} An alternative description of the ''E''<sub>8</sub> lattice which is sometimes convenient is as the set Ξ'<sub>8</sub> of all points in '''R'''<sup>8</sup> such that *all the coordinates are integers and the sum of the coordinates is even, or *all the coordinates are half-integers and the sum of the coordinates is odd. The lattices Ξ<sub>8</sub> and Ξ'<sub>8</sub> are [[isomorphic]]; one may pass from one to the other by changing the signs of any odd number of coordinates. The lattice Ξ<sub>8</sub> is sometimes called the ''even coordinate system'' for ''E''<sub>8</sub> while the lattice Ξ'<sub>8</sub> is called the ''odd coordinate system''. One choice of simple roots for ''E''<sub>8</sub> in the even coordinate system with rows ordered by node order in the alternate (non-canonical) Dynkin diagrams (above) is: :'''''Ξ±'''''<sub>''i''</sub> = '''e'''<sub>''i''</sub> β '''e'''<sub>''i''+1</sub>, for 1 β€ ''i'' β€ 6, and :'''''Ξ±'''''<sub>7</sub> = '''e'''<sub>7</sub> + '''e'''<sub>6</sub> (the above choice of simple roots for ''D''<sub>7</sub>) along with <math display=block> \boldsymbol\alpha_8 = \boldsymbol\beta_0 = -\frac{1}{2} \sum_{i=1}^8\mathbf{e}_i = (-1/2,-1/2,-1/2,-1/2,-1/2,-1/2,-1/2,-1/2).</math> {| style="text-align: right; border: 1px gray solid" cellspacing=0 |+ '''Simple roots in ''E''<sub>8</sub>: odd coordinates''' |- | 1||β1||0||0||0||0||0||0 |- |0|| 1||β1||0||0||0||0||0 |- |0||0|| 1||β1||0||0||0||0 |- |0||0||0|| 1||β1||0||0||0 |- | 0||0||0||0|| 1||β1||0||0 |- |0||0||0||0||0|| 1||β1||0 |- |0||0||0||0||0||0|| 1||β1 |- | β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} ||β{{sfrac|1|2}} || {{sfrac|1|2}} || {{sfrac|1|2}} || {{sfrac|1|2}} |} One choice of simple roots for ''E''<sub>8</sub> in the odd coordinate system with rows ordered by node order in alternate (non-canonical) Dynkin diagrams (above) is :'''''Ξ±'''''<sub>''i''</sub> = '''e'''<sub>''i''</sub> β '''e'''<sub>''i''+1</sub>, for 1 β€ ''i'' β€ 7 (the above choice of simple roots for ''A''<sub>7</sub>) along with :'''''Ξ±'''''<sub>8</sub> = '''''Ξ²'''''<sub>5</sub>, where :<math display="inline">\boldsymbol\beta_j = \frac{1}{2} \left(- \sum_{i=1}^j e_i + \sum_{i=j+1}^8 e_i\right).</math> (Using '''''Ξ²'''''<sub>3</sub> would give an isomorphic result. Using '''''Ξ²'''''<sub>1,7</sub> or '''''Ξ²'''''<sub>2,6</sub> would simply give ''A''<sub>8</sub> or ''D''<sub>8</sub>. As for '''''Ξ²'''''<sub>4</sub>, its coordinates sum to 0, and the same is true for '''''Ξ±'''''<sub>1...7</sub>, so they span only the 7-dimensional subspace for which the coordinates sum to 0; in fact β2'''''Ξ²'''''<sub>4</sub> has coordinates (1,2,3,4,3,2,1) in the basis ('''''Ξ±'''''<sub>''i''</sub>).) Since perpendicularity to '''''Ξ±'''''<sub>1</sub> means that the first two coordinates are equal, ''E''<sub>7</sub> is then the subset of ''E''<sub>8</sub> where the first two coordinates are equal, and similarly ''E''<sub>6</sub> is the subset of ''E''<sub>8</sub> where the first three coordinates are equal. This facilitates explicit definitions of ''E''<sub>7</sub> and ''E''<sub>6</sub> as :{{math|1=''E''<sub>7</sub> = {'''''Ξ±''''' β '''Z'''<sup>7</sup> βͺ ('''Z'''+1/2)<sup>7</sup>''' : ''' Ξ£'''''Ξ±'''''<sub>''i''</sub><sup>2</sup> + '''''Ξ±'''''<sub>1</sub><sup>2</sup> = 2, Ξ£'''''Ξ±'''''<sub>''i''</sub> + '''''Ξ±'''''<sub>1</sub> β 2'''Z'''},}} :{{math|1=''E''<sub>6</sub> = {'''''Ξ±''''' β '''Z'''<sup>6</sup> βͺ ('''Z'''+1/2)<sup>6</sup>''' : ''' Ξ£'''''Ξ±'''''<sub>''i''</sub><sup>2</sup> + 2'''''Ξ±'''''<sub>1</sub><sup>2</sup> = 2, Ξ£'''''Ξ±'''''<sub>''i''</sub> + 2'''''Ξ±'''''<sub>1</sub> β 2'''Z'''} }} Note that deleting '''''Ξ±'''''<sub>1</sub> and then '''''Ξ±'''''<sub>2</sub> gives sets of simple roots for ''E''<sub>7</sub> and ''E''<sub>6</sub>. However, these sets of simple roots are in different ''E''<sub>7</sub> and ''E''<sub>6</sub> subspaces of ''E''<sub>8</sub> than the ones written above, since they are not orthogonal to '''''Ξ±'''''<sub>1</sub> or '''''Ξ±'''''<sub>2</sub>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)