Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Topological vector space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other properties=== '''Meager, nowhere dense, and Baire''' A [[Absolutely convex set|disk]] in a TVS is not [[nowhere dense]] if and only if its closure is a neighborhood of the origin.{{sfn|Narici|Beckenstein|2011|pp=371-423}} A vector subspace of a TVS that is closed but not open is [[nowhere dense]].{{sfn|Narici|Beckenstein|2011|pp=371-423}} Suppose <math>X</math> is a TVS that does not carry the [[indiscrete topology]]. Then <math>X</math> is a [[Baire space]] if and only if <math>X</math> has no balanced absorbing nowhere dense subset.{{sfn|Narici|Beckenstein|2011|pp=371-423}} A TVS <math>X</math> is a Baire space if and only if <math>X</math> is [[nonmeager]], which happens if and only if there does not exist a [[nowhere dense]] set <math>D</math> such that <math display=inline>X = \bigcup_{n \in \N} n D.</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}} Every [[nonmeager]] locally convex TVS is a [[barrelled space]].{{sfn|Narici|Beckenstein|2011|pp=371-423}} '''Important algebraic facts and common misconceptions''' If <math>S \subseteq X</math> then <math>2 S \subseteq S + S</math>; if <math>S</math> is convex then equality holds. For an example where equality does {{em|not}} hold, let <math>x</math> be non-zero and set <math>S = \{- x, x\};</math> <math>S = \{x, 2 x\}</math> also works. A subset <math>C</math> is convex if and only if <math>(s + t) C = s C + t C</math> for all positive real <math>s > 0 \text{ and } t > 0,</math>{{sfn|Rudin|1991|p=38}} or equivalently, if and only if <math>t C + (1 - t) C \subseteq C</math> for all <math>0 \leq t \leq 1.</math>{{sfn|Rudin|1991|p=6}} The [[convex balanced hull]] of a set <math>S \subseteq X</math> is equal to the convex hull of the [[balanced hull]] of <math>S;</math> that is, it is equal to <math>\operatorname{co} (\operatorname{bal} S).</math> But in general, <math display=block>\operatorname{bal} (\operatorname{co} S) ~\subseteq~ \operatorname{cobal} S ~=~ \operatorname{co} (\operatorname{bal} S),</math> where the inclusion might be strict since the [[balanced hull]] of a convex set need not be convex (counter-examples exist even in <math>\R^2</math>). If <math>R, S \subseteq X</math> and <math>a</math> is a scalar then{{sfn|Narici|Beckenstein|2011|pp=67-113}} <math display=block>a(R + S) = aR + a S,~ \text{ and } ~\operatorname{co} (R + S) = \operatorname{co} R + \operatorname{co} S,~ \text{ and } ~\operatorname{co} (a S) = a \operatorname{co} S.</math> If <math>R, S \subseteq X</math> are convex non-empty disjoint sets and <math>x \not\in R \cup S,</math> then <math>S \cap \operatorname{co} (R \cup \{x\}) = \varnothing </math> or <math>R \cap \operatorname{co} (S \cup \{x\}) = \varnothing.</math> In any non-trivial vector space <math>X,</math> there exist two disjoint non-empty convex subsets whose union is <math>X.</math> '''Other properties''' Every TVS topology can be generated by a {{em|family}} of [[F-seminorm|''F''-seminorms]].{{sfn|Swartz|1992|p=35}} <!--START: REMOVED INFO- If <math>f : X \to \R</math> is a subadditive function (that is, <math>f(x + y) \leq f(x) + f(y)</math> for all <math>x, y \in X</math>) such as a [[sublinear function]], [[seminorm]], or [[Linear form|linear functional]], then <math>f</math> is continuous at the origin if and only if it is uniformly continuous on <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=192-193}} If <math>f : X \to \R</math> is a subadditive and satisfies <math>f(0) = 0</math> then <math>f</math> is continuous if its absolute value <math>|f| : X \to [0, \infty)</math> is continuous. -END:REMOVED INFO--> If <math>P(x)</math> is some unary [[Predicate (mathematical logic)|predicate]] (a true or false statement dependent on <math>x \in X</math>) then for any <math>z \in X,</math> <math>z + \{x \in X : P(x)\} = \{x \in X : P(x - z)\}.</math><ref group=proof><math display=block>z + \{x \in X : P(x)\} = \{z + x : x \in X, P(x)\} = \{z + x : x \in X, P((z + x) - z)\}</math> and so using <math>y = z + x</math> and the fact that <math>z + X = X,</math> this is equal to <math display=block>\{y : y - z \in X, P(y - z)\} = \{y : y \in X, P(y - z)\} = \{y \in X : P(y - z)\}.</math> [[Q.E.D.]] <math>\blacksquare</math></ref> So for example, if <math>P(x)</math> denotes "<math>\|x\| < 1</math>" then for any <math>z \in X,</math> <math>z + \{x \in X : \|x\| < 1\} = \{x \in X : \|x - z\| < 1\}.</math> Similarly, if <math>s \neq 0</math> is a scalar then <math>s \{x \in X : P(x)\} = \left\{x \in X : P\left(\tfrac{1}{s} x\right)\right\}.</math> The elements <math>x \in X</math> of these sets must range over a vector space (that is, over <math>X</math>) rather than not just a subset or else these equalities are no longer guaranteed; similarly, <math>z</math> must belong to this vector space (that is, <math>z \in X</math>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)