Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Weighted sum of variables==== {{see also|Weighted arithmetic mean#Variance{{!}}Variance of a weighted arithmetic mean}} {{distinguish|Weighted variance}} The scaling property and the Bienaymé formula, along with the property of the [[covariance]] {{math|Cov(''aX'', ''bY'') {{=}} ''ab'' Cov(''X'', ''Y'')}} jointly imply that <math display="block">\operatorname{Var}(aX \pm bY) =a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) \pm 2ab\, \operatorname{Cov}(X, Y).</math> This implies that in a weighted sum of variables, the variable with the largest weight will have a disproportionally large weight in the variance of the total. For example, if ''X'' and ''Y'' are uncorrelated and the weight of ''X'' is two times the weight of ''Y'', then the weight of the variance of ''X'' will be four times the weight of the variance of ''Y''. The expression above can be extended to a weighted sum of multiple variables: <math display="block">\operatorname{Var}\left(\sum_{i}^n a_iX_i\right) = \sum_{i=1}^na_i^2 \operatorname{Var}(X_i) + 2\sum_{1\le i}\sum_{<j\le n}a_ia_j\operatorname{Cov}(X_i,X_j)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)