Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
24-cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Simple rotations ==== [[Image:24-cell.gif|thumb|A 3D projection of a 24-cell performing a [[SO(4)#Geometry of 4D rotations|simple rotation]].{{Efn|name=planes through vertices}}]]In 3 dimensions a spinning polyhedron has a single invariant central ''plane of rotation''. The plane is an [[invariant set]] because each point in the plane moves in a circle but stays within the plane. Only ''one'' of a polyhedron's central planes can be invariant during a particular rotation; the choice of invariant central plane, and the angular distance and direction it is rotated, completely specifies the rotation. Points outside the invariant plane also move in circles (unless they are on the fixed ''axis of rotation'' perpendicular to the invariant plane), but the circles do not lie within a [[#Geodesics|''central'' plane]]. When a 4-polytope is rotating with only one invariant central plane, the same kind of [[Rotations in 4-dimensional Euclidean space#Simple rotations|simple rotation]] is happening that occurs in 3 dimensions. One difference is that instead of a fixed axis of rotation, there is an entire fixed central plane in which the points do not move. The fixed plane is the one central plane that is [[completely orthogonal]] to the invariant plane of rotation. In the 24-cell, there is a simple rotation which will take any vertex ''directly'' to any other vertex, also moving most of the other vertices but leaving at least 2 and at most 6 other vertices fixed (the vertices that the fixed central plane intersects). The vertex moves along a great circle in the invariant plane of rotation between adjacent vertices of a great hexagon, a great square or a great [[digon]], and the completely orthogonal fixed plane is a digon, a square or a hexagon, respectively.{{Efn|In the 24-cell each great square plane is [[completely orthogonal]] to another great square plane, and each great hexagon plane is completely orthogonal to a plane which intersects only two antipodal vertices: a great [[digon]] plane.|name=pairs of completely orthogonal planes}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)