Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Adele ring
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Trace and norm on the adele ring=== Let <math>L/K</math> be a finite extension. Since <math>\mathbb{A}_K=\mathbb{A}_K \otimes_K K</math> and <math>\mathbb{A}_L=\mathbb{A}_K \otimes_K L</math> from the Lemma above, <math>\mathbb{A}_K</math> can be interpreted as a closed subring of <math>\mathbb{A}_L.</math> For this embedding, write <math>\operatorname{con}_{L/K}</math>. Explicitly for all places <math>w</math> of <math>L</math> above <math>v</math> and for any <math>\alpha \in \mathbb{A}_K, (\operatorname{con}_{L/K}(\alpha))_w=\alpha_v \in K_v.</math> Let <math>M/L/K</math> be a tower of global fields. Then: :<math>\operatorname{con}_{M/K}(\alpha)=\operatorname{con}_{M/L}(\operatorname{con}_{L/K}(\alpha)) \qquad \forall \alpha \in \mathbb{A}_K.</math> Furthermore, restricted to the principal adeles <math>\operatorname{con}</math> is the natural injection <math>K \to L.</math> Let <math>\{\omega_1,\ldots,\omega_n\}</math> be a basis of the field extension <math>L/K.</math> Then each <math>\alpha \in \mathbb{A}_L</math> can be written as <math>\textstyle \sum_{j=1}^n \alpha_j \omega_j,</math> where <math>\alpha_j \in \mathbb{A}_K</math> are unique. The map <math>\alpha \mapsto \alpha_j</math> is continuous. Define <math>\alpha_{ij}</math> depending on <math>\alpha</math> via the equations: :<math>\begin{align} \alpha \omega_1 &=\sum_{j=1}^n \alpha_{1j} \omega_j \\ &\vdots \\ \alpha \omega_n &=\sum_{j=1}^n \alpha_{nj} \omega_j \end{align}</math> Now, define the trace and norm of <math>\alpha</math> as: :<math>\begin{align} \operatorname{Tr}_{L/K}(\alpha) &:= \operatorname{Tr} ((\alpha_{ij})_{i,j})=\sum_{i=1}^n \alpha_{ii}\\ N_{L/K}(\alpha) &:= N ((\alpha_{ij})_{i,j})=\det((\alpha_{ij})_{i,j}) \end{align}</math> These are the trace and the determinant of the linear map :<math>\begin{cases} \mathbb{A}_L \to \mathbb{A}_L \\ x \mapsto \alpha x\end{cases}</math> They are continuous maps on the adele ring, and they fulfil the usual equations: : <math>\begin{align} \operatorname{Tr}_{L/K}(\alpha+\beta)&=\operatorname{Tr}_{L/K}(\alpha) + \operatorname{Tr}_{L/K}(\beta) && \forall \alpha, \beta \in \mathbb{A}_L\\ \operatorname{Tr}_{L/K}(\operatorname{con}(\alpha))&=n\alpha && \forall \alpha \in \mathbb{A}_K\\ N_{L/K}(\alpha \beta)&=N_{L/K}(\alpha) N_{L/K}(\beta) && \forall \alpha, \beta \in \mathbb{A}_L\\ N_{L/K}(\operatorname{con}(\alpha))&=\alpha^n && \forall \alpha \in \mathbb{A}_K \end{align}</math> Furthermore, for <math>\alpha \in L, </math><math>\operatorname{Tr}_{L/K}(\alpha)</math> and <math>N_{L/K}(\alpha)</math> are identical to the trace and norm of the field extension <math>L/K.</math> For a tower of fields <math>M/L/K,</math> the result is: : <math>\begin{align} \operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(\alpha)) &= \operatorname{Tr}_{M/K}(\alpha) && \forall \alpha \in \mathbb{A}_M\\ N_{L/K} (N_{M/L}(\alpha))&=N_{M/K}(\alpha) && \forall \alpha \in \mathbb{A}_M \end{align}</math> Moreover, it can be proven that:<ref>See {{harvnb|Weil|1967|p=64}} or {{harvnb|Cassels|Fröhlich|1967|p=74}}.</ref> :<math>\begin{align} \operatorname{Tr}_{L/K}(\alpha) &= \left (\sum_{w | v}\operatorname{Tr}_{L_w/K_v}(\alpha_w) \right )_v && \forall \alpha \in \mathbb{A}_L\\ N_{L/K}(\alpha) &= \left (\prod_{w | v}N_{L_w/K_v}(\alpha_w) \right )_v && \forall \alpha \in \mathbb{A}_L \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)