Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Automobile handling
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Common handling problems == When any wheel leaves contact with the road there is a change in handling, so the suspension should keep all four (or three) wheels on the road in spite of hard cornering, swerving and bumps in the road. It is very important for handling, as well as other reasons, not to run out of suspension travel and "bottom" or "top". It is usually most desirable to have the [[Racing setup|car adjusted]] for a small amount of [[understeer]], so that it responds predictably to a turn of the steering wheel and the rear wheels have a smaller slip angle than the front wheels. However this may not be achievable for all loading, road and weather conditions, speed ranges, or while turning under acceleration or braking. Ideally, a car should carry passengers and baggage near its center of gravity and have similar tire loading, [[camber angle]] and roll stiffness in front and back to minimise the variation in handling characteristics. A driver can learn to deal with excessive oversteer or understeer, but not if it varies greatly in a short period of time. The most important common handling failings are; * [[Understeer]] β the front wheels tend to crawl slightly or even slip and drift towards the outside of the turn. The driver can compensate by turning a little more tightly, but [[road-holding]] is reduced, the car's behaviour is less predictable and the tires are liable to wear more quickly. * [[Oversteer]] β the rear wheels tend to crawl or slip towards the outside of the turn more than the front. The driver must correct by steering away from the corner, otherwise the car is liable to spin, if pushed to its limit. Oversteer is sometimes useful, to assist in steering, especially if it occurs only when the driver chooses it by applying power. * [[Bump steer]] β the effect of irregularity of a road surface on the angle or motion of a car. It may be the result of the kinematic motion of the suspension rising or falling, causing toe-in or toe-out at the loaded wheel, ultimately affecting the yaw angle (heading) of the car. It may also be caused by defective or worn out suspension components. This will always happen under some conditions but depends on suspension, steering linkage, unsprung weight, angular inertia, differential type, frame rigidity, tires and tire pressures. If suspension travel is exhausted the wheel either bottoms or loses contact with the road. As with hard turning on flat roads, it is better if the wheel picks up by the spring reaching its neutral shape, rather than by suddenly contacting a limiting structure of the suspension. * [[Body roll]] β the car leans towards the outside of the curve. This interferes with the driver's control, because they must wait for the car to finish leaning before they can fully judge the effect of his steering change. It also adds to the delay before the car moves in the desired direction. It also slightly changes the weight borne by the tires as described in [[weight transfer]]. * [[Load transfer|Excessive load transfer]] β On any vehicle that is cornering, the outside wheels are more heavily loaded than the inside due to the CG being above the ground. Total weight transfer (sum of front and back), in steady cornering, is determined by the ratio of the height of a car's center of gravity to its [[axle track]]. When the weight transfer equals half the vehicle's loaded weight, it will start to [[Vehicle rollover|roll over]]. This can be avoided by manually or automatically reducing the turn rate, but this causes further reduction in road-holding. * Slow response β sideways acceleration does not start immediately when the steering is turned and may not stop immediately when it is returned to center. This is partly caused by body roll. Other causes include tires with high slip angle, and yaw and roll angular inertia. Roll angular inertia aggravates body roll by delaying it. Soft tires aggravate yaw angular inertia by waiting for the car to reach their slip angle before turning the car.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)