Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cardinality
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Skolem's paradox ==== {{Main|Skolem's paradox}} [[File:Lowenheim-skolem.svg|thumb|Illustration of the [[Löwenheim–Skolem theorem]], where <math>\mathcal{M}</math> and <math>\mathcal{N}</math> are models of set theory, and <math>\kappa</math> is an arbitrary infinite cardinal number.]] In [[model theory]], a [[Model (mathematical logic)|model]] corresponds to a specific interpretation of a [[formal language]] or [[Theory (mathematical logic)|theory]]. It consists of a [[Domain of discourse|domain]] (a set of objects) and an [[Interpretation (logic)|interpretation]] of the symbols and formulas in the language, such that the axioms of the theory are satisfied within this structure. The [[Löwenheim–Skolem theorem]] shows that any model of set theory in [[first-order logic]], if it is [[consistent]], has an equivalent [[Structure (mathematical logic)|model]] which is countable. This appears contradictory, because [[Georg Cantor]] proved that there exist sets which are not countable. Thus the seeming contradiction is that a model that is itself countable, and which therefore contains only countable sets, [[Satisfiability|satisfies]] the first-order sentence that intuitively states "there are uncountable sets".<ref name=":6">{{Citation |last=Bays |first=Timothy |title=Skolem's Paradox |date=2025 |encyclopedia=The Stanford Encyclopedia of Philosophy |editor-last=Zalta |editor-first=Edward N. |url=https://plato.stanford.edu/entries/paradox-skolem/ |access-date=2025-04-13 |edition=Spring 2025 |publisher=Metaphysics Research Lab, Stanford University |editor2-last=Nodelman |editor2-first=Uri}}</ref> A mathematical explanation of the paradox, showing that it is not a true contradiction in mathematics, was first given in 1922 by [[Thoralf Skolem]]. He explained that the countability of a set is not absolute, but relative to the model in which the cardinality is measured. Skolem's work was harshly received by [[Ernst Zermelo]], who argued against the limitations of first-order logic and Skolem's notion of "relativity", but the result quickly came to be accepted by the mathematical community.<ref>{{cite journal |last1=van Dalen |first1=Dirk |author-link1=Dirk van Dalen |last2=Ebbinghaus |first2=Heinz-Dieter |author2-link=Heinz-Dieter Ebbinghaus |date=Jun 2000 |title=Zermelo and the Skolem Paradox |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d51449b161b9e1d352e103af28fe07f5e15cb4b |journal=The Bulletin of Symbolic Logic |volume=6 |pages=145–161 |citeseerx=10.1.1.137.3354 |doi=10.2307/421203 |jstor=421203 |s2cid=8530810 |number=2 |hdl=1874/27769}}</ref><ref name=":6" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)