Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Differentiation of distributions==== Let <math>A : \mathcal{D}(U) \to \mathcal{D}(U)</math> be the partial derivative operator <math>\tfrac{\partial}{\partial x_k}.</math> To extend <math>A</math> we compute its transpose: <math display=block>\begin{align} \langle {}^{t}A(D_\psi), \phi \rangle &= \int_U \psi (A\phi) \,dx && \text{(See above.)} \\ &= \int_U \psi \frac{\partial\phi}{\partial x_k} \, dx \\[4pt] &= -\int_U \phi \frac{\partial\psi}{\partial x_k}\, dx && \text{(integration by parts)} \\[4pt] &= -\left\langle \frac{\partial\psi}{\partial x_k}, \phi \right\rangle \\[4pt] &= -\langle A \psi, \phi \rangle = \langle - A \psi, \phi \rangle \end{align}</math> Therefore <math>{}^{t}A = -A.</math> Thus, the partial derivative of <math>T</math> with respect to the coordinate <math>x_k</math> is defined by the formula <math display=block>\left\langle \frac{\partial T}{\partial x_k}, \phi \right\rangle = - \left\langle T, \frac{\partial \phi}{\partial x_k} \right\rangle \qquad \text{ for all } \phi \in \mathcal{D}(U).</math> With this definition, every distribution is infinitely differentiable, and the derivative in the direction <math>x_k</math> is a [[linear operator]] on <math>\mathcal{D}'(U).</math> More generally, if <math>\alpha</math> is an arbitrary [[multi-index]], then the partial derivative <math>\partial^\alpha T</math> of the distribution <math>T \in \mathcal{D}'(U)</math> is defined by <math display=block>\langle \partial^\alpha T, \phi \rangle = (-1)^{|\alpha|} \langle T, \partial^\alpha \phi \rangle \qquad \text{ for all } \phi \in \mathcal{D}(U).</math> Differentiation of distributions is a continuous operator on <math>\mathcal{D}'(U);</math> this is an important and desirable property that is not shared by most other notions of differentiation. If <math>T</math> is a distribution in <math>\R</math> then <math display=block>\lim_{x \to 0} \frac{T - \tau_x T}{x} = T'\in \mathcal{D}'(\R),</math> where <math>T'</math> is the derivative of <math>T</math> and <math>\tau_x</math> is a translation by <math>x;</math> thus the derivative of <math>T</math> may be viewed as a limit of quotients.{{sfn|Rudin|1991|p=180}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)