Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Force
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Kinematic integrals === {{main|Impulse (physics)|l1=Impulse|Mechanical work|Power (physics)}} Forces can be used to define a number of physical concepts by [[integration (calculus)|integrating]] with respect to [[kinematics|kinematic variables]]. For example, integrating with respect to time gives the definition of [[Impulse (physics)|impulse]]:<ref>{{Cite book |title=Engineering Mechanics |first1=Russell C. |last1=Hibbeler |publisher=Pearson Prentice Hall |year=2010 |edition=12th |isbn=978-0-13-607791-6 |page=222 }}</ref> <math display="block">\mathbf{J}=\int_{t_1}^{t_2}{\mathbf{F} \, \mathrm{d}t},</math> which by Newton's second law must be equivalent to the change in momentum (yielding the [[Impulse momentum theorem]]). Similarly, integrating with respect to position gives a definition for the [[work (physics)|work done]] by a force:<ref name=FeynmanVol1/>{{rp|((13-3))}} <math display="block" qid=Q42213>W= \int_{\mathbf{x}_1}^{\mathbf{x}_2} {\mathbf{F} \cdot {\mathrm{d}\mathbf{x}}},</math> which is equivalent to changes in [[kinetic energy]] (yielding the [[work energy theorem]]).<ref name=FeynmanVol1/>{{rp|((13-3))}} [[Power (physics)|Power]] ''P'' is the rate of change d''W''/d''t'' of the work ''W'', as the [[trajectory]] is extended by a position change <math> d\mathbf{x}</math> in a time interval d''t'':<ref name=FeynmanVol1/>{{rp|((13-2))}} <math display="block"> \mathrm{d}W = \frac{\mathrm{d}W}{\mathrm{d}\mathbf{x}} \cdot \mathrm{d}\mathbf{x} = \mathbf{F} \cdot \mathrm{d}\mathbf{x},</math> so <math display="block">P = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}W}{\mathrm{d}\mathbf{x}} \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{F} \cdot \mathbf{v}, </math> with <math qid=Q11465>\mathbf{v} = \mathrm{d}\mathbf{x}/\mathrm{d}t</math> the [[velocity]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)