Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fubini's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Legendre's relation === In this next example, the more generalized form of the equation is used again as a mold: :{| class = "wikitable" | <math>\biggl[\int_{0}^{1} v(x) \,\mathrm{d}x\biggr]\biggl[\int_{0}^{1} w(x) \,\mathrm{d}x\biggr]= \int_{0}^{1} \int_{0}^{1} \left(x\,v(xy) \,w(x) + x\,v(x)\,w(xy)\right) \,\mathrm{d}x \,\mathrm{d}y </math> |} The following integrals can be computed by using the incomplete [[Elliptic Integral]]s of the first and second kind as antiderivatives and these integrals have values that can be represented with ''Complete Elliptic Integrals'': : <math> \int_{0}^{1} \frac{1}{\sqrt{1 - x^4}} \,\mathrm{d}x = </math> <math display="block"> \biggl\{ - \frac{1}{2}\sqrt{2}\,F\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] \biggr\}_{x = 0}^{x = 1} = \frac{1}{2}\sqrt{2}\,K\bigl(\frac{1}{2}\sqrt{2}\bigr) </math> : <math>\int_{0}^{1} \frac{x^2}{\sqrt{1 - x^4}} \,\mathrm{d}x =</math> <math display="block">\biggl\{\frac{1}{2}\sqrt{2}\,F\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] - \sqrt{2}\,E\biggl[\arccos(x);\frac{1}{2}\sqrt{2}\biggr] \biggr\}_{x = 0}^{x = 1} = \frac{1}{2}\sqrt{2}\biggl[2\,E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac{1}{2}\sqrt{2}\bigr)\biggr] </math> Inserting these two integrals into the above form gives: <math display="block">\biggl[\int_{0}^{1} \frac{1}{\sqrt{1 - x^4}} \,\mathrm{d}x\biggr]\biggl[\int_{0}^{1} \frac{x^2}{\sqrt{1 - x^4}} \,\mathrm{d}x\biggr] =\int_{0}^{1} \int_{0}^{1} \frac{x^3 (y^2+1)}{\sqrt{(1 - x^4)(1 - x^4 y^4)}} \,\mathrm{d}x\,\mathrm{d}y = </math> <math display="block">= \int_{0}^{1} \biggl\{\frac{y^2 + 1}{2\,y^2}\biggl[\text{artanh}\bigl(y^2\bigr) - \text{artanh}\biggl(\frac{\sqrt{1 - x^4}\,y^2}{\sqrt{1 - x^4 y^4}}\biggr)\biggr]\biggr\}_{x = 0}^{x = 1}\,\mathrm{d}y = \int_{0}^{1} \frac{y^2 + 1}{2\,y^2}\,\mathrm{artanh}\bigl(y^2\bigr) \,\mathrm{d}y= </math> <math display="block">= \biggl[\arctan(y) - \frac{1 - y^2}{2\,y}\,\mathrm{artanh}\bigl(y^2\bigr)\biggr]_{y = 0}^{y = 1} = \arctan(1) = \frac{\pi}{4} </math> For the [[Lemniscate elliptic functions|Lemniscatic]] special case of [[Legendre's relation]], this result emerges: : <math>K\bigl(\frac{1}{2}\sqrt{2}\bigr)\biggl[2\,E\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac{1}{2}\sqrt{2}\bigr)\biggr] = \frac{\pi}{2} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)