Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fusion power
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Magnetic Mirror ===== [[Magnetic mirror]] effect. If a particle follows the field line and enters a region of higher field strength, the particles can be reflected. Several devices apply this effect. The most famous was the magnetic mirror machines, a series of devices built at LLNL from the 1960s to the 1980s.<ref name=Booth>{{cite journal|last=Booth|first=William|title=Fusion's $372-Million Mothball|journal=Science|date=October 9, 1987|volume=238|issue=4824|pages=152β155|doi= 10.1126/science.238.4824.152|pmid=17800453|bibcode=1987Sci...238..152B}}</ref> Other examples include magnetic bottles and [[Biconic cusp]].<ref>{{Cite book|last=Grad|first=Harold |title=Containment in cusped plasma systems (classic reprint).|date=2016|publisher=Forgotten Books |isbn=978-1333477035|location=<!-- Place of publication not identified -->|language=en|oclc=980257709}}</ref> Because the mirror machines were straight, they had some advantages over ring-shaped designs. The mirrors were easier to construct and maintain and [[Direct energy conversion|direct conversion]] energy capture was easier to implement.<ref name="ReferenceA"/> Poor confinement has led this approach to be abandoned, except in the polywell design.<ref>{{Cite web|last=Lee|first=Chris|date=June 22, 2015|title=Magnetic mirror holds promise for fusion|url=https://arstechnica.com/science/2015/06/magnetic-mirror-holds-promise-for-fusion/|access-date=October 11, 2020|website=Ars Technica|language=en-us}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)