Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Hermite functions== ===Definition=== One can define the '''Hermite functions''' (often called Hermite-Gaussian functions) from the physicist's polynomials: <math display="block">\psi_n(x) = \left (2^n n! \sqrt{\pi} \right )^{-\frac12} e^{-\frac{x^2}{2}} H_n(x) = (-1)^n \left (2^n n! \sqrt{\pi} \right)^{-\frac12} e^{\frac{x^2}{2}}\frac{d^n}{dx^n} e^{-x^2}.</math> Thus, <math display="block">\sqrt{2(n+1)}~~\psi_{n+1}(x)= \left ( x- {d\over dx}\right ) \psi_n(x).</math> Since these functions contain the square root of the [[weight function]] and have been scaled appropriately, they are [[Orthonormality|orthonormal]]: <math display="block">\int_{-\infty}^\infty \psi_n(x) \psi_m(x) \,dx = \delta_{nm},</math> and they form an orthonormal basis of {{math|''L''<sup>2</sup>('''R''')}}. This fact is equivalent to the corresponding statement for Hermite polynomials (see above). The Hermite functions are closely related to the [[Whittaker function]] {{Harv|Whittaker|Watson|1996}} {{math|''D''<sub>''n''</sub>(''z'')}}: <math display="block">D_n(z) = \left(n! \sqrt{\pi}\right)^{\frac12} \psi_n\left(\frac{z}{\sqrt 2}\right) = (-1)^n e^\frac{z^2}{4} \frac{d^n}{dz^n} e^\frac{-z^2}{2}</math> and thereby to other [[parabolic cylinder function]]s. The Hermite functions satisfy the differential equation <math display="block">\psi_n''(x) + \left(2n + 1 - x^2\right) \psi_n(x) = 0.</math> This equation is equivalent to the [[Schrödinger equation]] for a harmonic oscillator in quantum mechanics, so these functions are the [[eigenfunctions]]. [[Image:Herm5.svg|thumb|center|450px|Hermite functions: 0 (blue, solid), 1 (orange, dashed), 2 (green, dot-dashed), 3 (red, dotted), 4 (purple, solid), and 5 (brown, dashed)]] <math display="block">\begin{align} \psi_0(x) &= \pi^{-\frac14} \, e^{-\frac12 x^2}, \\ \psi_1(x) &= \sqrt{2} \, \pi^{-\frac14} \, x \, e^{-\frac12 x^2}, \\ \psi_2(x) &= \left(\sqrt{2} \, \pi^{\frac14}\right)^{-1} \, \left(2x^2-1\right) \, e^{-\frac12 x^2}, \\ \psi_3(x) &= \left(\sqrt{3} \, \pi^{\frac14}\right)^{-1} \, \left(2x^3-3x\right) \, e^{-\frac12 x^2}, \\ \psi_4(x) &= \left(2 \sqrt{6} \, \pi^{\frac14}\right)^{-1} \, \left(4x^4-12x^2+3\right) \, e^{-\frac12 x^2}, \\ \psi_5(x) &= \left(2 \sqrt{15} \, \pi^{\frac14}\right)^{-1} \, \left(4x^5-20x^3+15x\right) \, e^{-\frac12 x^2}. \end{align}</math> [[Image:Herm50.svg|thumb|center|680px|Hermite functions: 0 (blue, solid), 2 (orange, dashed), 4 (green, dot-dashed), and 50 (red, solid)]] === Recursion relation === Following recursion relations of Hermite polynomials, the Hermite functions obey <math display="block">\psi_n'(x) = \sqrt{\frac{n}{2}}\,\psi_{n-1}(x) - \sqrt{\frac{n+1}{2}}\psi_{n+1}(x)</math> and <math display="block">x\psi_n(x) = \sqrt{\frac{n}{2}}\,\psi_{n-1}(x) + \sqrt{\frac{n+1}{2}}\psi_{n+1}(x).</math> Extending the first relation to the arbitrary {{mvar|m}}th derivatives for any positive integer {{mvar|m}} leads to <math display="block">\psi_n^{(m)}(x) = \sum_{k=0}^m \binom{m}{k} (-1)^k 2^\frac{m-k}{2} \sqrt{\frac{n!}{(n-m+k)!}} \psi_{n-m+k}(x) \operatorname{He}_k(x).</math> This formula can be used in connection with the recurrence relations for {{math|''He<sub>n</sub>''}} and {{math|''ψ''<sub>''n''</sub>}} to calculate any derivative of the Hermite functions efficiently. ===Cramér's inequality=== For real {{mvar|x}}, the Hermite functions satisfy the following bound due to [[Harald Cramér]]<ref>{{harvnb|Erdélyi|Magnus|Oberhettinger|Tricomi|1955|p=207}}.</ref><ref>{{harvnb|Szegő|1955}}.</ref> and Jack Indritz:<ref name="indritz">{{citation | last1 = Indritz | first1 = Jack | doi = 10.1090/S0002-9939-1961-0132852-2 | issue = 6 | journal = [[Proceedings of the American Mathematical Society]] | mr = 0132852 | pages = 981–983 | title = An inequality for Hermite polynomials | volume = 12 | year = 1961| doi-access = free }}</ref> <math display="block"> \bigl|\psi_n(x)\bigr| \le \pi^{-\frac14}.</math> ===Hermite functions as eigenfunctions of the Fourier transform=== The Hermite functions {{math|''ψ''<sub>''n''</sub>(''x'')}} are a set of [[eigenfunction]]s of the [[continuous Fourier transform]] {{mathcal|F}}. To see this, take the physicist's version of the generating function and multiply by {{math|''e''<sup>−{{sfrac|1|2}}''x''<sup>2</sup></sup>}}. This gives <math display="block">e^{-\frac12 x^2 + 2xt - t^2} = \sum_{n=0}^\infty e^{-\frac12 x^2} H_n(x) \frac{t^n}{n!}.</math> The Fourier transform of the left side is given by <math display="block">\begin{align} \mathcal{F} \left\{ e^{ -\frac12 x^2 + 2xt - t^2 } \right\}(k) &= \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^\infty e^{-ixk}e^{-\frac12 x^2 + 2xt - t^2}\, dx \\ &= e^{-\frac12 k^2 - 2kit + t^2 } \\ &= \sum_{n=0}^\infty e^{ -\frac12 k^2 } H_n(k) \frac{(-it)^n}{n!}. \end{align}</math> The Fourier transform of the right side is given by <math display="block">\mathcal{F} \left\{ \sum_{n=0}^\infty e^{-\frac12 x^2} H_n(x) \frac {t^n}{n!} \right\} = \sum_{n=0}^\infty \mathcal{F} \left \{ e^{-\frac12 x^2} H_n(x) \right\} \frac{t^n}{n!}.</math> Equating like powers of {{mvar|t}} in the transformed versions of the left and right sides finally yields <math display="block">\mathcal{F} \left\{ e^{-\frac12 x^2} H_n(x) \right\} = (-i)^n e^{-\frac12 k^2} H_n(k).</math> The Hermite functions {{math|''ψ<sub>n</sub>''(''x'')}} are thus an orthonormal basis of {{math|''L''<sup>2</sup>('''R''')}}, which ''diagonalizes the Fourier transform operator''.<ref>In this case, we used the unitary version of the Fourier transform, so the [[eigenvalue]]s are {{math|(−''i'')<sup>''n''</sup>}}. The ensuing resolution of the identity then serves to define powers, including fractional ones, of the Fourier transform, to wit a [[Fractional Fourier transform]] generalization, in effect a [[Mehler kernel]].</ref> In short, we have:<math display="block">\frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi_n(x) dx = (-i)^n \psi_n(k), \quad \frac{1}{\sqrt{2\pi}} \int e^{+ikx} \psi_n(k) dk = i^n \psi_n(x)</math> ===Wigner distributions of Hermite functions=== The [[Wigner distribution function]] of the {{mvar|n}}th-order Hermite function is related to the {{mvar|n}}th-order [[Laguerre polynomial]]. The Laguerre polynomials are <math display="block">L_n(x) := \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!}x^k,</math> leading to the oscillator Laguerre functions <math display="block">l_n (x) := e^{-\frac{x}{2}} L_n(x).</math> For all natural integers {{mvar|n}}, it is straightforward to see<ref>{{Citation |author-link=Gerald Folland |first=G. B. |last=Folland |title=Harmonic Analysis in Phase Space | series=Annals of Mathematics Studies |volume=122 |publisher=Princeton University Press |date=1989 |isbn=978-0-691-08528-9}}</ref> that <math display="block">W_{\psi_n}(t,f) = (-1)^n l_n \big(4\pi (t^2 + f^2) \big),</math> where the Wigner distribution of a function {{math|''x'' ∈ ''L''<sup>2</sup>('''R''', '''C''')}} is defined as <math display="block"> W_x(t,f) = \int_{-\infty}^\infty x\left(t + \frac{\tau}{2}\right) \, x\left(t - \frac{\tau}{2}\right)^* \, e^{-2\pi i\tau f} \,d\tau.</math> This is a fundamental result for the [[quantum harmonic oscillator]] discovered by [[Hilbrand J. Groenewold|Hip Groenewold]] in 1946 in his PhD thesis.<ref name="Groenewold1946">{{cite journal | last1 = Groenewold | first1 = H. J. | year = 1946 | title = On the Principles of elementary quantum mechanics | journal = Physica | volume = 12 | issue = 7| pages = 405–460 | doi = 10.1016/S0031-8914(46)80059-4 | bibcode=1946Phy....12..405G}}</ref> It is the standard paradigm of [[Phase-space formulation#Simple harmonic oscillator|quantum mechanics in phase space]]. There are [[Laguerre function#Relation to Hermite polynomials|further relations]] between the two families of polynomials. ===Partial Overlap Integrals=== It can be shown<ref>{{cite arXiv |last=Mawby|first=Clement|title=Tests of Macrorealism in Discrete and Continuous Variable Systems |date=2024 |class=quant-ph |eprint=2402.16537}}</ref><ref>{{cite arXiv |last=Moriconi|first=Marco|title=Nodes of Wavefunctions |date=2007 |eprint=quant-ph/0702260}}</ref> that the overlap between two different Hermite functions (<math> k\neq \ell </math>) over a given interval has the exact result: <math display="block">\int_{x_1}^{x_2}\psi_{k}(x) \psi_{\ell}(x)\,dx =\frac{1}{2(\ell - k)}\left(\psi_k'(x_2)\psi_\ell(x_2)-\psi_\ell'(x_2)\psi_k(x_2)-\psi_k'(x_1)\psi_\ell(x_1)+\psi_\ell'(x_1)\psi_k(x_1)\right). </math> ===Combinatorial interpretation of coefficients=== In the Hermite polynomial {{math|''He''<sub>''n''</sub>(''x'')}} of variance 1, the absolute value of the coefficient of {{math|''x''<sup>''k''</sup>}} is the number of (unordered) partitions of an {{mvar|n}}-element set into {{mvar|k}} singletons and {{math|{{sfrac|''n'' − ''k''|2}}}} (unordered) pairs. Equivalently, it is the number of involutions of an {{mvar|n}}-element set with precisely {{mvar|k}} fixed points, or in other words, the number of matchings in the [[complete graph]] on {{mvar|n}} vertices that leave {{mvar|k}} vertices uncovered (indeed, the Hermite polynomials are the [[matching polynomial]]s of these graphs). The sum of the absolute values of the coefficients gives the total number of partitions into singletons and pairs, the so-called [[Telephone number (mathematics)|telephone numbers]] : 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496,... {{OEIS|A000085}}. This combinatorial interpretation can be related to complete exponential [[Bell polynomials]] as <math display="block">\operatorname{He}_n(x) = B_n(x, -1, 0, \ldots, 0),</math> where {{math|1=''x''<sub>''i''</sub> = 0}} for all {{math|''i'' > 2}}. These numbers may also be expressed as a special value of the Hermite polynomials:<ref name="gfgt">{{citation | last1 = Banderier | first1 = Cyril | last2 = Bousquet-Mélou | first2 = Mireille | author2-link = Mireille Bousquet-Mélou | last3 = Denise | first3 = Alain | last4 = Flajolet | first4 = Philippe | author4-link = Philippe Flajolet | last5 = Gardy | first5 = Danièle | last6 = Gouyou-Beauchamps | first6 = Dominique | arxiv = math/0411250 | doi = 10.1016/S0012-365X(01)00250-3 | issue = 1–3 | journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] | mr = 1884885 | pages = 29–55 | title = Generating functions for generating trees | volume = 246 | year = 2002| s2cid = 14804110 }}</ref> <math display="block">T(n) = \frac{\operatorname{He}_n(i)}{i^n}.</math> === Completeness relation === The [[Christoffel–Darboux formula]] for Hermite polynomials reads <math display="block">\sum_{k=0}^n \frac{H_k(x) H_k(y)}{k!2^k} = \frac{1}{n!2^{n+1}}\,\frac{H_n(y) H_{n+1}(x) - H_n(x) H_{n+1}(y)}{x - y}.</math> Moreover, the following [[Borel functional calculus#Resolution of the identity|completeness identity]] for the above Hermite functions holds in the sense of [[distribution (mathematics)|distributions]]: <math display="block">\sum_{n=0}^\infty \psi_n(x) \psi_n(y) = \delta(x - y),</math> where {{mvar|δ}} is the [[Dirac delta function]], {{math|''ψ''<sub>''n''</sub>}} the Hermite functions, and {{math|''δ''(''x'' − ''y'')}} represents the [[Lebesgue measure]] on the line {{math|1=''y'' = ''x''}} in {{math|'''R'''<sup>2</sup>}}, normalized so that its projection on the horizontal axis is the usual Lebesgue measure. This distributional identity follows {{harvtxt|Wiener|1958}} by taking {{math|''u'' → 1}} in [[Mehler's formula]], valid when {{math|−1 < ''u'' < 1}}: <math display="block">E(x, y; u) := \sum_{n=0}^\infty u^n \, \psi_n (x) \, \psi_n (y) = \frac{1}{\sqrt{\pi (1 - u^2)}} \, \exp\left(-\frac{1 - u}{1 + u} \, \frac{(x + y)^2}{4} - \frac{1 + u}{1 - u} \, \frac{(x - y)^2}{4}\right),</math> which is often stated equivalently as a separable kernel,<ref>{{Citation | last1=Mehler | first1=F. G. | title=Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975 | language=de |trans-title=On the development of a function of arbitrarily many variables according to higher-order Laplace functions |id={{ERAM|066.1720cj}} | year=1866 | journal=Journal für die Reine und Angewandte Mathematik | issn=0075-4102 | issue=66 | pages=161–176}}. See p. 174, eq. (18) and p. 173, eq. (13).</ref><ref>{{harvnb|Erdélyi|Magnus|Oberhettinger|Tricomi|1955|page=194}}, 10.13 (22).</ref> <math display="block">\sum_{n=0}^\infty \frac{H_n(x) H_n(y)}{n!} \left(\frac u 2\right)^n = \frac{1}{\sqrt{1 - u^2}} e^{\frac{2u}{1 + u}xy - \frac{u^2}{1 - u^2}(x - y)^2}.</math> The function {{math|(''x'', ''y'') → ''E''(''x'', ''y''; ''u'')}} is the bivariate Gaussian probability density on {{math|'''R'''<sup>2</sup>}}, which is, when {{mvar|u}} is close to 1, very concentrated around the line {{math|1=''y'' = ''x''}}, and very spread out on that line. It follows that <math display="block">\sum_{n=0}^\infty u^n \langle f, \psi_n \rangle \langle \psi_n, g \rangle = \iint E(x, y; u) f(x) \overline{g(y)} \,dx \,dy \to \int f(x) \overline{g(x)} \,dx = \langle f, g \rangle</math> when {{math|''f''}} and {{math|''g''}} are continuous and compactly supported. This yields that {{mvar|f}} can be expressed in Hermite functions as the sum of a series of vectors in {{math|''L''<sup>2</sup>('''R''')}}, namely, <math display="block">f = \sum_{n=0}^\infty \langle f, \psi_n \rangle \psi_n.</math> In order to prove the above equality for {{math|''E''(''x'',''y'';''u'')}}, the [[Fourier transform]] of [[Gaussian function]]s is used repeatedly: <math display="block">\rho \sqrt{\pi} e^{-\frac{\rho^2 x^2}{4}} = \int e^{isx - \frac{s^2}{\rho^2}} \,ds \quad \text{for }\rho > 0.</math> The Hermite polynomial is then represented as <math display="block"> H_n(x) = (-1)^n e^{x^2} \frac {d^n}{dx^n} \left( \frac {1}{2\sqrt{\pi}} \int e^{isx - \frac{s^2}{4}} \,ds \right) = (-1)^n e^{x^2}\frac{1}{2\sqrt{\pi}} \int (is)^n e^{isx - \frac{s^2}{4}} \,ds.</math> With this representation for {{math|''H<sub>n</sub>''(''x'')}} and {{math|''H<sub>n</sub>''(''y'')}}, it is evident that <math display="block">\begin{align} E(x, y; u) &= \sum_{n=0}^\infty \frac{u^n}{2^n n! \sqrt{\pi}} \, H_n(x) H_n(y) e^{-\frac{x^2+y^2}{2}} \\ &= \frac{e^{\frac{x^2+y^2}{2}}}{4\pi\sqrt{\pi}}\iint\left( \sum_{n=0}^\infty \frac{1}{2^n n!} (-ust)^n \right ) e^{isx+ity - \frac{s^2}{4} - \frac{t^2}{4}}\, ds\,dt \\ & =\frac{e^{\frac{x^2+y^2}{2}}}{4\pi\sqrt{\pi}}\iint e^{-\frac{ust}{2}} \, e^{isx+ity - \frac{s^2}{4} - \frac{t^2}{4}}\, ds\,dt, \end{align}</math> and this yields the desired resolution of the identity result, using again the Fourier transform of Gaussian kernels under the substitution <math display="block">s = \frac{\sigma + \tau}{\sqrt 2}, \quad t = \frac{\sigma - \tau}{\sqrt 2}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)