Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incomplete gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Regularized gamma functions and Poisson random variables == Two related functions are the regularized gamma functions: <math display="block">\begin{align} P(s,x) &= \frac{\gamma(s,x)}{\Gamma(s)}, \\[1ex] Q(s,x) &= \frac{\Gamma(s,x)}{\Gamma(s)} = 1 - P(s,x). \end{align}</math> <math>P(s,x)</math> is the [[cumulative distribution function]] for [[Gamma distribution|gamma random variables]] with [[shape parameter]] <math>s</math> and [[scale parameter]] 1. When <math>s</math> is an integer, <math>Q(s+1, \lambda)</math> is the cumulative distribution function for [[Poisson random variable]]s: If <math>X</math> is a <math>\mathrm{Poi}(\lambda)</math> random variable then <math display="block"> \Pr(X \leq s) = \sum_{i \leq s} e^{-\lambda} \frac{\lambda^i}{i!} = \frac{\Gamma(s+1,\lambda)}{\Gamma(s+1)} = Q(s+1,\lambda).</math> This formula can be derived by repeated integration by parts. In the context of the [[stable count distribution]], the <math> s </math> parameter can be regarded as inverse of LΓ©vy's stability parameter <math> \alpha</math>: <math display="block"> Q(s,x) = \int_0^\infty e^{\left( -{x^s}/{\nu} \right)} \, \mathfrak{N}_{{1}/{s}}\left(\nu\right) \, d\nu , \quad (s > 1)</math> where <math>\mathfrak{N}_{\alpha}(\nu)</math> is a standard stable count distribution of shape <math> \alpha = 1/s < 1</math>. <math>P(s,x)</math> and <math>Q(s, x)</math> are implemented as <code>gammainc</code><ref>{{Cite web|url=https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainc.html#scipy.special.gammainc|title=scipy.special.gammainc β SciPy v1.11.4 Manual|website=docs.scipy.org}}</ref> and <code>gammaincc</code><ref>{{Cite web|url=https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincc.html|title=scipy.special.gammaincc β SciPy v1.11.4 Manual|website=docs.scipy.org}}</ref> in [[scipy]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)