Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further properties== ===Scaling properties=== The Legendre transformation has the following scaling properties: For {{math|''a'' > 0}}, <math display="block">f(x) = a \cdot g(x) \Rightarrow f^\star(p) = a \cdot g^\star\left(\frac{p}{a}\right) </math> <math display="block">f(x) = g(a \cdot x) \Rightarrow f^\star(p) = g^\star\left(\frac{p}{a}\right).</math> It follows that if a function is [[homogeneous function|homogeneous of degree {{mvar|r}}]] then its image under the Legendre transformation is a homogeneous function of degree {{mvar|s}}, where {{math|1=1/''r'' + 1/''s'' = 1}}. (Since {{math|1=''f''(''x'') = ''x<sup>r</sup>''/''r''}}, with {{math|''r'' > 1}}, implies {{math|1=''f''*(''p'') = ''p<sup>s</sup>''/''s''}}.) Thus, the only monomial whose degree is invariant under Legendre transform is the quadratic. ===Behavior under translation=== <math display="block"> f(x) = g(x) + b \Rightarrow f^\star(p) = g^\star(p) - b</math> <math display="block"> f(x) = g(x + y) \Rightarrow f^\star(p) = g^\star(p) - p \cdot y </math> ===Behavior under inversion=== <math display="block"> f(x) = g^{-1}(x) \Rightarrow f^\star(p) = - p \cdot g^\star\left(\frac{1}{p} \right) </math> ===Behavior under linear transformations=== Let {{math|''A'' : '''R'''<sup>''n''</sup> → '''R'''<sup>''m''</sup>}} be a [[linear transformation]]. For any convex function {{mvar|f}} on {{math|'''R'''<sup>''n''</sup>}}, one has <math display="block"> (A f)^\star = f^\star A^\star </math> where {{math|''A''*}} is the [[adjoint operator]] of {{mvar|A}} defined by <math display="block"> \left \langle Ax, y^\star \right \rangle = \left \langle x, A^\star y^\star \right \rangle, </math> and {{math|''Af''}} is the ''push-forward'' of {{mvar|f}} along {{mvar|A}} <math display="block"> (A f)(y) = \inf\{ f(x) : x \in X , A x = y \}. </math> A closed convex function {{mvar|f}} is symmetric with respect to a given set {{mvar|G}} of [[orthogonal matrix|orthogonal linear transformations]], <math display="block">f(A x) = f(x), \; \forall x, \; \forall A \in G </math> [[if and only if]] {{math|''f''*}} is symmetric with respect to {{mvar|G}}. ===Infimal convolution=== The '''infimal convolution''' of two functions {{mvar|f}} and {{mvar|g}} is defined as <math display="block"> \left(f \star_\inf g\right)(x) = \inf \left \{ f(x-y) + g(y) \, | \, y \in \mathbf{R}^n \right \}. </math> Let {{math|''f''<sub>1</sub>, ..., ''f<sub>m</sub>''}} be proper convex functions on {{math|'''R'''<sup>''n''</sup>}}. Then <math display="block"> \left( f_1 \star_\inf \cdots \star_\inf f_m \right)^\star = f_1^\star + \cdots + f_m^\star. </math> ===Fenchel's inequality=== For any function {{mvar|f}} and its convex conjugate {{math|''f'' *}} ''Fenchel's inequality'' (also known as the ''Fenchel–Young inequality'') holds for every {{math|''x'' ∈ ''X''}} and {{math|''p'' ∈ ''X''*}}, i.e., ''independent'' {{math|''x'', ''p''}} pairs, <math display="block">\left\langle p,x \right\rangle \le f(x) + f^\star(p).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)