Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lie algebroid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Lie theorems === A Lie algebroid is called '''integrable''' if it is isomorphic to ''<math>\mathrm{Lie}(G)</math>'' for some Lie groupoid'' <math>G \rightrightarrows M</math>''. The analogue of the classical '''Lie I theorem''' states that:<ref name=":1">{{Cite journal|last1=Moerdijk|first1=Ieke|last2=Mrcun|first2=Janez|date=2002|title=On integrability of infinitesimal actions|url=http://muse.jhu.edu/content/crossref/journals/american_journal_of_mathematics/v124/124.3moerdijk.pdf|journal=American Journal of Mathematics|language=en|volume=124|issue=3|pages=567–593|doi=10.1353/ajm.2002.0019|issn=1080-6377|arxiv=math/0006042|s2cid=53622428}}</ref><blockquote>if ''<math>A</math>'' is an integrable Lie algebroid, then there exists a unique (up to isomorphism) ''<math>s</math>''-simply connected Lie groupoid ''<math>G</math>'' integrating ''<math>A</math>''.</blockquote>Similarly, a morphism ''<math>F: A_1 \to A_2</math>'' between integrable Lie algebroids is called '''integrable''' if it is the differential ''<math>F = d\phi_{ \mid A} </math>'' for some morphism ''<math>\phi: G_1 \to G_2</math>'' between two integrations of ''<math>A_1</math>'' and ''<math>A_2</math>''. The analogue of the classical '''Lie II theorem''' states that:<ref>{{Cite journal|last1=Mackenzie|first1=Kirill|last2=Xu|first2=Ping|date=2000-05-01|title=Integration of Lie bialgebroids|url=https://www.sciencedirect.com/science/article/pii/S004093839800069X|journal=Topology|language=en|volume=39|issue=3|pages=445–467|doi=10.1016/S0040-9383(98)00069-X|issn=0040-9383|arxiv=dg-ga/9712012|s2cid=119594174}}</ref> <blockquote>if ''<math>F: \mathrm{Lie}(G_1) \to \mathrm{Lie}(G_2)</math>'' is a morphism of integrable Lie algebroids, and ''<math>G_1</math>'' is ''<math>s</math>''-simply connected, then there exists a unique morphism of Lie groupoids ''<math>\phi: G_1 \to G_2</math>'' integrating ''<math>F</math>''.</blockquote>In particular, by choosing as ''<math>G_2</math>'' the general linear groupoid ''<math>GL(E)</math>'' of a vector bundle ''<math>E</math>'', it follows that any representation of an integrable Lie algebroid integrates to a representation of its ''<math>s</math>''-simply connected integrating Lie groupoid. On the other hand, there is no analogue of the classical '''Lie III theorem''', i.e. going back from any Lie algebroid to a Lie groupoid is not always possible. Pradines claimed that such a statement hold,<ref>{{Cite journal|last=Pradines|first=Jean|date=1968|title=Troisieme théorème de Lie pour les groupoides différentiables|url=https://gallica.bnf.fr/ark:/12148/bpt6k480295b/f24.item.r=pradine|journal=Comptes Rendus de l'Académie des Sciences, Série A|language=fr|volume=267|pages=21–23}}</ref> and the first explicit example of non-integrable Lie algebroids, coming for instance from foliation theory, appeared only several years later.<ref>{{Cite journal|last1=Almeida|first1=Rui|last2=Molino|first2=Pierre|date=1985|title=Suites d'Atiyah et feuilletages transversalement complets|journal=Comptes Rendus de l'Académie des Sciences, Série I|language=fr|volume=300|pages=13–15}}</ref> Despite several partial results, including a complete solution in the transitive case,<ref>{{Cite book|last=Mackenzie|first=K.|url=https://www.cambridge.org/core/books/lie-groupoids-and-lie-algebroids-in-differential-geometry/6B8B1D00E8B7672ABA80A0C950FD4979|title=Lie Groupoids and Lie Algebroids in Differential Geometry|date=1987|publisher=Cambridge University Press|isbn=978-0-521-34882-9|series=London Mathematical Society Lecture Note Series|location=Cambridge|doi=10.1017/cbo9780511661839}}</ref> the general obstructions for an arbitrary Lie algebroid to be integrable have been discovered only in 2003 by [[Marius Crainic|Crainic]] and [[Rui Loja Fernandes|Fernandes]].<ref name=":2">{{cite journal|last1=Crainic|first1=Marius|last2=Fernandes|first2=Rui L.|year=2003|title=Integrability of Lie brackets|journal=Ann. of Math.|series=2|volume=157|issue=2|pages=575–620|arxiv=math/0105033|doi=10.4007/annals.2003.157.575|s2cid=6992408}}</ref> Adopting a more general approach, one can see that every Lie algebroid integrates to a [[Algebraic stack|stacky]] Lie groupoid.<ref>{{cite journal|author1=Hsian-Hua Tseng|author2=Chenchang Zhu|year=2006|title=Integrating Lie algebroids via stacks|journal=Compositio Mathematica|volume=142|issue=1|pages=251–270|arxiv=math/0405003|doi=10.1112/S0010437X05001752|s2cid=119572919}}</ref><ref>{{cite arXiv|eprint=math/0701024|author1=Chenchang Zhu|title=Lie II theorem for Lie algebroids via stacky Lie groupoids|date=2006}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)