Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Limit of a function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Euclidean metric=== The limit in [[Euclidean space]] is a direct generalization of limits to [[vector-valued functions]]. For example, we may consider a function <math>f:S \times T \to \R^3</math> such that <math display=block>f(x, y) = (f_1(x, y), f_2(x, y), f_3(x, y) ).</math> Then, under the usual [[Euclidean metric]], <math display=block>\lim_{(x, y) \to (p, q)} f(x, y) = (L_1, L_2, L_3)</math> if the following holds: {{block indent|For every {{math|''Ξ΅'' > 0}}, there exists a {{math|''Ξ΄'' > 0}} such that for all {{mvar|x}} in {{mvar|S}} and {{mvar|y}} in {{mvar|T}}, <math display=inline>0 < \sqrt{(x-p)^2 + (y-q)^2} < \delta</math> implies <math display=inline>\sqrt{(f_1-L_1)^2 + (f_2-L_2)^2 + (f_3-L_3)^2} < \varepsilon.</math><ref name="Hartman">{{citation | last = Hartman | first = Gregory | url = https://math.libretexts.org/Courses/Georgia_State_University_-_Perimeter_College/MATH_2215%3A_Calculus_III/13%3A_Vector-valued_Functions/The_Calculus_of_Vector-Valued_Functions_II | date = 2019 | title = The Calculus of Vector-Valued Functions II | language = en | access-date = 2022-10-31}}</ref>}} <math display=block>(\forall \varepsilon > 0 )\, (\exists \delta > 0) \, (\forall x \in S) \, (\forall y \in T)\, \left(0 < \sqrt{(x-p)^2+(y-q)^2} < \delta \implies \sqrt{(f_1-L_1)^2 + (f_2-L_2)^2 + (f_3-L_3)^2} < \varepsilon \right).</math> In this example, the function concerned are finite-[[Dimension (vector space)|dimension]] vector-valued function. In this case, the '''limit theorem for vector-valued function''' states that if the limit of each component exists, then the limit of a vector-valued function equals the vector with each component taken the limit:<ref name="Hartman" /> <math display=block>\lim_{(x, y) \to (p, q)} \Bigl(f_1(x, y), f_2(x, y), f_3(x, y)\Bigr) = \left(\lim_{(x, y) \to (p, q)}f_1(x, y), \lim_{(x, y) \to (p, q)}f_2(x, y), \lim_{(x, y) \to (p, q)}f_3(x, y)\right).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)