Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of logarithmic identities
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Deveci's Proof ==== A fundamental feature of the proof is the accumulation of the [[Subtraction#Notation and terminology|subtrahends]] <math display="inline"> \frac{1}{x}</math> into a unit fraction, that is, <math display="inline"> \frac{m}{x} = \frac{1}{n}</math> for <math>m \mid x</math>, thus <math>m = \omega + 1</math> rather than <math>m = |\mathbb{Z}_{m} \cap \mathbb{N}|</math>, where the [[Maximum and minimum|extrema]] of <math>\mathbb{Z}_{m} \cap \mathbb{N}</math> are <math>[0, \omega]</math> if <math>\mathbb{N} = \mathbb{N}_{0}</math> and <math>[1, \omega]</math> [[Natural number#Notation|otherwise]], with the minimum of <math>0</math> being implicit in the latter case due to the structural requirements of the proof. Since the [[Cardinality#Comparing_sets|cardinality]] of <math>\mathbb{Z}_{m} \cap \mathbb{N}</math> depends on the selection of one of two possible minima, the integral <math>\textstyle \int \frac{1}{t} dt</math>, as a set-theoretic procedure, is a function of the maximum <math>\omega</math> (which remains consistent across both interpretations) plus <math>1</math>, not the cardinality (which is ambiguous<ref>{{Cite arXiv |eprint=1102.0418 |first=Peter |last=Harremoës |title=Is Zero a Natural Number? |year=2011|class=math.HO }} A synopsis on the nature of 0 which frames the choice of minimum as the dichotomy between ordinals and cardinals.</ref><ref>{{Cite journal |last=Barton |first=N. |year=2020 |title=Absence perception and the philosophy of zero |journal=Synthese |volume=197 |issue=9 |pages=3823–3850 |doi=10.1007/s11229-019-02220-x |pmc=7437648 |pmid=32848285}} See section 3.1</ref> due to varying definitions of the minimum). Whereas the harmonic number difference computes the integral in a global sliding window, the double series, in parallel, computes the sum in a local sliding window—a shifting <math>m</math>-tuple—over the harmonic series, advancing the window by <math>m</math> positions to select the next <math>m</math>-tuple, and offsetting each element of each tuple by <math display="inline"> \frac{1}{m}</math> relative to the window's absolute position. The sum <math display="inline">\sum_{n=1}^{k} \sum \frac{1}{x - r}</math> corresponds to <math>H_{km}</math> which scales <math>H_{m}</math> without bound. The sum <math display="inline"> \sum_{n=1}^{k} -\frac{1}{n}</math> corresponds to the prefix <math>H_{k}</math> trimmed from the series to establish the window's moving lower bound <math>k+1</math>, and <math>\ln(m)</math> is the limit of the sliding window (the scaled, truncated<ref>The <math>k+1</math> shift is characteristic of the [[#Riemann Sum|right Riemann sum]] employed to prevent the integral from degenerating into the harmonic series, thereby averting divergence. Here, <math display="inline"> -\frac{1}{n}</math> functions analogously, serving to regulate the series. The successor operation <math>m = \omega + 1</math> signals the implicit inclusion of the modulus <math>m</math> (the region omitted from <math>\mathbb{N}_{1}</math>). The importance of this, from an axiomatic perspective, becomes evident when the residues of <math>m</math> are formulated as <math>e^{\ln(\omega + 1)}</math>, where <math>\omega + 1</math> is bootstrapped by <math>\omega = 0</math> to produce the residues of modulus <math>m = \omega = \omega_{0} + 1 = 1</math>. Consequently, <math>\omega</math> represents a limiting value in this context.</ref> series): <math display="block">\begin{align} \sum_{n=1}^k \sum_{r=1}^{\omega} \left( \frac{1}{mn - r} - \frac{1}{mn} \right) &= \sum_{n=1}^k \sum_{r=0}^{\omega} \left( \frac{1}{mn - r} - \frac{1}{mn} \right) \\ &= \sum_{n=1}^k \left( -\frac{1}{n} + \sum_{r=0}^{\omega} \frac{1}{mn - r} \right) \\ &= -H_k + \sum_{n=1}^k \sum_{r=0}^{\omega} \frac{1}{mn - r} \\ &= -H_k + \sum_{n=1}^k \sum_{r=0}^{\omega} \frac{1}{(n-1)m + m - r} \\ &= -H_k + \sum_{n=1}^k \sum_{j=1}^m \frac{1}{(n-1)m + j} \\ &= -H_k + \sum_{n=1}^k \left( H_{nm} - H_{m(n-1)} \right) \\ &= -H_k + H_{mk} \end{align}</math> <math display="block">\lim_{k \to \infty} H_{km} - H_k = \sum_{x \in \langle m \rangle \cap \mathbb{N}} \sum_{r \in \mathbb{Z}_m \cap \mathbb{N}} \left( \frac{1}{x-r} - \frac{1}{x} \right) = \ln(\omega + 1) = \ln(m)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)