Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Machine learning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Decision trees === {{Main|Decision tree learning}} [[File:Decision Tree.jpg|thumb|A decision tree showing survival probability of passengers on the [[Titanic]]]] Decision tree learning uses a [[decision tree]] as a [[Predictive modeling|predictive model]] to go from observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves). It is one of the predictive modelling approaches used in statistics, data mining, and machine learning. Tree models where the target variable can take a discrete set of values are called classification trees; in these tree structures, [[leaf node|leaves]] represent class labels, and branches represent [[Logical conjunction|conjunction]]s of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically [[real numbers]]) are called regression trees. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and [[decision making]]. In data mining, a decision tree describes data, but the resulting classification tree can be an input for decision-making.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)