Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metamaterial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == Metamaterials are under consideration for many applications.<ref name= MASSA>{{cite journal |doi= 10.1109/JPROC.2015.2394292 |first1= G.| last1= Oliveri | first2= D.H.| last2= Werner |first3 = A. |last3= Massa | title= Reconfigurable electromagnetics through metamaterials – A review | journal= [[Proceedings of the IEEE]] |volume= 103| issue=7 | pages= 1034–56 |date= 2015|s2cid= 25179597}}</ref> Metamaterial antennas are commercially available. In 2007, one researcher stated that for metamaterial applications to be realized, energy loss must be reduced, materials must be extended into three-dimensional [[isotropic]] materials and production techniques must be industrialized.<ref name=goals>{{cite web| publisher =DOE /[[Ames Laboratory]]| title =Metamaterials found to work for visible light| date =2007-01-04 | url =http://eurekalert.org/pub_releases/2007-01/dl-mft010407.php?light | author =Costas Soukoulis | access-date =2009-11-07}}</ref> === Antennas === {{Main|Metamaterial antennas}} Metamaterial antennas are a class of [[Antenna (radio)|antennas]] that use metamaterials to improve performance.<ref name=radiation-properties/><ref name=slyusarmeta/><ref name=Directive-emission>{{cite journal| doi =10.1103/PhysRevLett.89.213902| title =A Metamaterial for Directive Emission| year =2002| last1 =Enoch| first1 =Stefan| first2 =GéRard| first3 =Pierre| first4 =Nicolas| first5 =Patrick| journal =Physical Review Letters| volume =89| page =213902| pmid =12443413| last2 =Tayeb| last3 =Sabouroux| last4 =Guérin| last5 =Vincent| issue =21| bibcode=2002PhRvL..89u3902E| s2cid =37505778}}</ref><ref name=neg-group-vel-1>{{cite journal| doi =10.1109/TAP.2003.817556| title =Periodically loaded transmission line with effective negative refractive index and negative group velocity| year =2003| last1 =Siddiqui| first1 =O.F.| first3 =G.V.| journal =IEEE Transactions on Antennas and Propagation| volume =51| pages =2619–25| last2 =Mo Mojahedi| last3 =Eleftheriades|bibcode = 2003ITAP...51.2619S| issue =10 }}</ref> Demonstrations showed that metamaterials could enhance an antenna's [[Intensity (physics)|radiated power]].<ref name=radiation-properties/><ref name=Antenna-substrate>{{cite journal|last=Wu |first=B.-I. |author2=W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk and J. A. Kong |title=A Study of Using Metamaterials as Antenna Substrate to Enhance Gain |journal=Progress in Electromagnetics Research |volume=51 |pages=295–28 |year=2005 |doi=10.2528/PIER04070701 |last3=Pacheco |first3=Joe |last4=Chen |first4=Xudong |last5=Grzegorczyk |first5=Tomasz M. |last6=Kong |first6=Jin Au |doi-access=free }}</ref> Materials that can attain negative permeability allow for properties such as small antenna size, high directivity and tunable frequency.<ref name=radiation-properties>{{cite journal|doi = 10.1002/pssb.200674505|title = Radiation properties of a split ring resonator and monopole composite|year = 2007|last1 = Alici|first1 = Kamil Boratay|first2 = Ekmel|journal = Physica Status Solidi B|volume = 244|pages = 1192–96|last2 = Özbay|bibcode = 2007PSSBR.244.1192A|issue = 4 |hdl = 11693/49278|s2cid = 5348103|hdl-access = free}}</ref><ref name=slyusarmeta/> === Absorber === {{Main|Metamaterial absorber}} A metamaterial absorber manipulates the loss components of metamaterials' permittivity and magnetic permeability, to absorb large amounts of [[electromagnetic radiation]].<ref>{{cite journal |last1=de Oliveira Neto |first1=A. M. |last2=Beccaro |first2=W. |last3=de Oliveira |first3=A. M. |last4=Justo |first4=J.F. |title=Exploring the Internal Patterns in the Design of Ultrawideband Microwave Absorbers |journal=IEEE Antennas and Wireless Propagation Letters |date=2023 |volume=22 |issue=9 |pages=2290–2294 |doi=10.1109/LAWP.2023.3284650|bibcode=2023IAWPL..22.2290N }}</ref> This is a useful feature for [[photodetection]]<ref>{{cite journal | last1 = Li | first1 = W. | last2 = Valentine | first2 = J. | year = 2014 | title = Metamaterial Perfect Absorber Based Hot Electron Photodetection | journal = Nano Letters | volume = 14 | issue = 6| pages = 3510–14 | doi=10.1021/nl501090w| pmid = 24837991 | bibcode = 2014NanoL..14.3510L }}</ref><ref>{{Cite journal|last1=Yu|first1=Peng|last2=Wu|first2=Jiang|last3=Ashalley|first3=Eric|last4=Govorov|first4=Alexander|last5=Wang|first5=Zhiming|date=2016|title=Dual-band absorber for multispectral plasmon-enhanced infrared photodetection|journal=Journal of Physics D: Applied Physics|language=en|volume=49|issue=36|pages=365101|doi=10.1088/0022-3727/49/36/365101|issn=0022-3727|bibcode=2016JPhD...49J5101Y|s2cid=123927835 |url=https://discovery.ucl.ac.uk/id/eprint/1522579/1/JPD%20final%20version.pdf}}</ref> and [[solar photovoltaic]] applications.<ref>{{Cite journal|last1=Yu|first1=Peng|last2=Besteiro|first2=Lucas V.|last3=Huang|first3=Yongjun|last4=Wu|first4=Jiang|last5=Fu|first5=Lan|author5-link=Lan Fu (engineer)|last6=Tan|first6=Hark H.|last7=Jagadish|first7=Chennupati|last8=Wiederrecht|first8=Gary P.|last9=Govorov|first9=Alexander O.|title=Broadband Metamaterial Absorbers|journal=Advanced Optical Materials|pages=1800995|language=en|doi=10.1002/adom.201800995|issn=2195-1071|year=2018|volume=7|issue=3|doi-access=free|hdl=1885/213159|hdl-access=free}}</ref> Loss components are also relevant in applications of negative refractive index (photonic metamaterials, antenna systems) or [[transformation optics]] ([[metamaterial cloaking]], celestial mechanics), but often are not used in these applications. === Superlens === {{Main|Superlens}} A ''superlens'' is a two or three-dimensional device that uses metamaterials, usually with negative refraction properties, to achieve resolution beyond the [[diffraction limit]] (ideally, infinite resolution). Such a behavior is enabled by the capability of double-negative materials to yield negative phase velocity. The diffraction limit is inherent in conventional optical devices or lenses.<ref name=perfect-lens-2000>{{Cite journal|doi =10.1103/PhysRevLett.85.3966|title =Negative Refraction Makes a Perfect Lens|year =2000|last1 =Pendry|first1 =J. B.|journal =Physical Review Letters|volume =85|pages =3966–69|pmid =11041972|issue =18|bibcode=2000PhRvL..85.3966P|s2cid =25803316|doi-access =free}}</ref><ref name=thin-sliver>{{Cite journal| doi =10.1126/science.1108759| title =Sub-Diffraction-Limited Optical Imaging with a Silver Superlens| year =2005| last1 =Fang| first1 =N.| journal =Science| volume =308| pages =534–37| pmid =15845849| last2 =Lee| first2 =H| last3 =Sun| first3 =C| last4 =Zhang| first4 =X| issue =5721|bibcode = 2005Sci...308..534F | s2cid =1085807}}</ref> === Cloaking devices === {{Main|Metamaterial cloaking}} Metamaterials are a potential basis for a practical [[cloaking device]]. The [[proof of principle]] was demonstrated on October 19, 2006. No practical cloaks are publicly known to exist.<ref>{{cite news|publisher=Office of News & Communications Duke University |title=First Demonstration of a Working Invisibility Cloak |url=http://www.dukenews.duke.edu/2006/10/cloakdemo.html |access-date=2009-05-05 |url-status=dead |archive-url=https://web.archive.org/web/20090719231753/http://www.dukenews.duke.edu/2006/10/cloakdemo.html |archive-date=July 19, 2009 }}</ref><ref>{{cite journal|title=Metamaterial Electromagnetic Cloak at Microwave Frequencies|author=Schurig, D.|journal=Science|volume=314|issue=5801|doi=10.1126/science.1133628|pmid=17053110|year=2006|bibcode = 2006Sci...314..977S|display-authors=1|last2=Mock|first2=J. J.|last3=Justice|first3=B. J.|last4=Cummer|first4=S. A.|last5=Pendry|first5=J. B.|last6=Starr|first6=A. F.|last7=Smith|first7=D. R.|pages=977–80 |s2cid=8387554|doi-access=free}}</ref><ref>{{cite news|title=Experts test cloaking technology|date=2006-10-19|work=[[BBC News]]|url=http://news.bbc.co.uk/1/hi/sci/tech/6064620.stm|access-date=2008-08-05}}</ref><ref>{{cite web|url=http://www.purdue.edu/uns/x/2007a/070402ShalaevCloaking.html|title=Engineers see progress in creating 'invisibility cloak'|work=purdue.edu}}</ref><ref>{{cite journal|title=Achieving transparency with plasmonic and metamaterial coatings|doi=10.1103/PhysRevE.72.016623|pmid=16090123|journal=Phys. Rev. E|volume=72|issue=1|page=016623|year=2005|arxiv = cond-mat/0502336 |bibcode = 2005PhRvE..72a6623A |last1=Alù|first1=Andrea|last2=Engheta|first2=Nader|s2cid=6004609}}</ref><ref>Merritt, Richard (January 2009) "[http://news.duke.edu/2009/01/invis09.html Next Generation Cloaking Device Demonstrated: Metamaterial renders object 'invisible'"] {{webarchive |url=https://web.archive.org/web/20090220020959/http://news.duke.edu/2009/01/invis09.html |date=February 20, 2009 }}</ref> === Radar cross-section (RCS-)reducing metamaterials === Metamaterials have applications in [[stealth technology]], which reduces RCS in any of various ways (e.g., absorption, diffusion, redirection). Conventionally, the RCS has been reduced either by [[radar-absorbent material]] (RAM) or by purpose shaping of the targets such that the scattered energy can be redirected away from the source. While RAMs have narrow frequency band functionality, purpose shaping limits the aerodynamic performance of the target. More recently, metamaterials or metasurfaces have been synthesized that can redirect the scattered energy away from the source using either array theory<ref name="A. Modi 19 2">{{cite journal | last1 = Modi | first1 = A. Y. | last2 = Alyahya | first2 = M. A. | last3 = Balanis | first3 = C. A. | last4 = Birtcher | first4 = C. R. | year = 2019| title = Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors with Multiple Bounces | journal = IEEE Transactions on Antennas and Propagation | volume = 67 | issue = 3| page = 1| doi = 10.1109/TAP.2019.2940494 | s2cid = 212649480 }}</ref><ref name="A. Modi 19">{{cite journal | last1 = Modi | first1 = A. Y. | last2 = Balanis | first2 = C. A. | last3 = Birtcher | first3 = C. R. | last4 = Shaman | first4 = H. | year = 2019| title = New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory | journal = IEEE Transactions on Antennas and Propagation | volume = 67 | issue = 1| pages = 298–308 | doi = 10.1109/TAP.2018.2878641 | bibcode = 2019ITAP...67..298M | s2cid = 58670543 }}</ref><ref name="A. Modi 17">{{cite journal | doi = 10.1109/TAP.2017.2734069 | volume=65 | issue=10 | title=Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors | year=2017 | journal=IEEE Transactions on Antennas and Propagation | pages=5406–5417 | last1 = Modi | first1 = Anuj Y. | last2 = Balanis | first2 = Constantine A. | last3 = Birtcher | first3 = Craig R. | last4 = Shaman | first4 = Hussein N.| bibcode=2017ITAP...65.5406M | s2cid=20724998 }}</ref><ref>{{cite journal | doi = 10.2528/PIER10060402 | volume=107 | title=A novel approach for RCS reduction using a combination of artificial magnetic conductors | year=2010 | journal=Progress in Electromagnetics Research | pages=147–159 | last1 = Marà | last2 = de Cos | first2 = Elena | last3 = Alvarez Lopez | first3 = Yuri | last4 = Las-Heras | first4 = Fernando| doi-access = free }}</ref> or generalized Snell's law.<ref>{{cite journal | doi = 10.1063/1.4881935 | volume=104 | issue=22 | title=Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces | year=2014 | journal=Applied Physics Letters | page=221110 | last1 = Li | first1 = Yongfeng | last2 = Zhang | first2 = Jieqiu | last3 = Qu | first3 = Shaobo | last4 = Wang | first4 = Jiafu | last5 = Chen | first5 = Hongya | last6 = Xu | first6 = Zhuo | last7 = Zhang | first7 = Anxue| bibcode=2014ApPhL.104v1110L }}</ref><ref name="capasso">{{cite journal |last1=Yu |first1=Nanfang |last2=Genevet |first2=Patrice |last3=Kats |first3=Mikhail A. |last4=Aieta |first4=Francesco |last5=Tetienne |first5=Jean-Philippe |last6=Capasso |first6=Federico |last7=Gaburro |first7=Zeno |date=October 2011 |title=Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction |journal=Science |bibcode=2011Sci...334..333Y |doi=10.1126/science.1210713 |volume=334 |issue=6054 |pages=333–7 |pmid=21885733|s2cid=10156200 |doi-access=free }}</ref> This has led to aerodynamically favorable shapes for the targets with the reduced RCS. === Seismic protection === {{Main|Seismic metamaterials}} Seismic metamaterials counteract the adverse effects of seismic waves on man-made structures.<ref name=control_elastic_waves/><ref name=seismic-cloak>{{cite web|last =Johnson| first =R. Colin|title =Metamaterial cloak could render buildings 'invisible' to earthquakes|publisher= EETimes.com|date =2009-07-23 | url =http://www.eetimes.com/showArticle.jhtml?articleID=218600378| access-date =2009-09-09}}</ref><ref name=seismic-cloak-2>{{Cite news| last = Barras| first = Colin| title =Invisibility cloak could hide buildings from quakes| newspaper =New Scientist| page =1| date =2009-06-26 | url =https://www.newscientist.com/article/dn17378-invisibility-cloak-could-hide-buildings-from-quakes.html#| access-date =2009-10-20}}</ref> === Sound filtering === Metamaterials textured with nanoscale wrinkles could control sound or light signals, such as changing a material's color or improving [[ultrasound]] resolution. Uses include [[Nondestructive testing|nondestructive material testing]], [[medical diagnostics]] and [[sound suppression]]. The materials can be made through a high-precision, multi-layer deposition process. The thickness of each layer can be controlled within a fraction of a wavelength. The material is then compressed, creating precise wrinkles whose spacing can cause scattering of selected frequencies.<ref>{{cite web|url=http://www.kurzweilai.net/wrinkled-metamaterials-for-controlling-light-and-sound-propagation |title=Wrinkled metamaterials for controlling light and sound propagation |publisher=KurzweilAI |date=2014-01-28 |access-date=2014-04-15}}</ref><ref>{{Cite journal | doi = 10.1103/PhysRevLett.112.034301| title = Transforming Wave Propagation in Layered Media via Instability-Induced Interfacial Wrinkling| journal = Physical Review Letters| volume = 112| issue = 3| year = 2014| last1 = Rudykh | first1 = S. | last2 = Boyce | first2 = M. C. | bibcode=2014PhRvL.112c4301R | pmid=24484141 | page=034301| hdl = 1721.1/85082| hdl-access = free}}</ref> === Guided mode manipulations === Metamaterials can be integrated with [[optical waveguides]] to tailor guided [[electromagnetic waves]] ([[meta-waveguide]]).<ref name=":0">{{Cite journal |last1=Meng |first1=Yuan |last2=Chen |first2=Yizhen |last3=Lu |first3=Longhui |last4=Ding |first4=Yimin |last5=Cusano |first5=Andrea |last6=Fan |first6=Jonathan A. |last7=Hu |first7=Qiaomu |last8=Wang |first8=Kaiyuan |last9=Xie |first9=Zhenwei |last10=Liu |first10=Zhoutian |last11=Yang |first11=Yuanmu |date=2021-11-22 |title=Optical meta-waveguides for integrated photonics and beyond |journal=Light: Science & Applications |language=en |volume=10 |issue=1 |pages=235 |doi=10.1038/s41377-021-00655-x |pmid=34811345 |pmc=8608813 |bibcode=2021LSA....10..235M |issn=2047-7538}}</ref> Subwavelength structures like metamaterials can be integrated with for instance silicon waveguides to develop and polarization beam splitters<ref>{{Cite journal |last1=Halir |first1=Robert |last2=Cheben |first2=Pavel |last3=Luque-González |first3=José Manuel |last4=Sarmiento-Merenguel |first4=Jose Darío |last5=Schmid |first5=Jens H. |last6=Wangüemert-Pérez |first6=Gonzalo |last7=Xu |first7=Dan-Xia |last8=Wang |first8=Shurui |last9=Ortega-Moñux |first9=Alejandro |last10=Molina-Fernández |first10=Íñigo |date=November 2016 |title=Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial |url=https://onlinelibrary.wiley.com/doi/10.1002/lpor.201600213 |journal=Laser & Photonics Reviews |language=en |volume=10 |issue=6 |pages=1039–1046 |doi=10.1002/lpor.201600213 |arxiv=1606.03750 |bibcode=2016LPRv...10.1039H |s2cid=126025926 |issn=1863-8880}}</ref> and optical couplers,<ref>{{Cite journal |last1=Meng |first1=Yuan |last2=Hu |first2=Futai |last3=Liu |first3=Zhoutian |last4=Xie |first4=Peng |last5=Shen |first5=Yijie |last6=Xiao |first6=Qirong |last7=Fu |first7=Xing |last8=Bae |first8=Sang-Hoon |last9=Gong |first9=Mali |date=2019-06-10 |title=Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization |url=https://opg.optica.org/oe/abstract.cfm?uri=oe-27-12-16425 |journal=Optics Express |language=EN |volume=27 |issue=12 |pages=16425–16439 |doi=10.1364/OE.27.016425 |pmid=31252868 |bibcode=2019OExpr..2716425M |s2cid=189958968 |issn=1094-4087|doi-access=free }}</ref> adding new degrees of freedom of controlling light propagation at nanoscale for integrated photonic devices.<ref>{{Cite journal |last1=Cheben |first1=Pavel |last2=Halir |first2=Robert |last3=Schmid |first3=Jens H. |last4=Atwater |first4=Harry A. |last5=Smith |first5=David R. |date=August 2018 |title=Subwavelength integrated photonics |url=https://www.nature.com/articles/s41586-018-0421-7 |journal=Nature |language=en |volume=560 |issue=7720 |pages=565–572 |doi=10.1038/s41586-018-0421-7 |pmid=30158604 |bibcode=2018Natur.560..565C |s2cid=52117964 |issn=1476-4687}}</ref> Other applications such as integrated mode converters,<ref>{{Cite journal |last1=Li |first1=Zhaoyi |last2=Kim |first2=Myoung-Hwan |last3=Wang |first3=Cheng |last4=Han |first4=Zhaohong |last5=Shrestha |first5=Sajan |last6=Overvig |first6=Adam Christopher |last7=Lu |first7=Ming |last8=Stein |first8=Aaron |last9=Agarwal |first9=Anuradha Murthy|author9-link=Anu Agarwal |last10=Lončar |first10=Marko |last11=Yu |first11=Nanfang |date=July 2017 |title=Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces |url=https://www.nature.com/articles/nnano.2017.50 |journal=Nature Nanotechnology |language=en |volume=12 |issue=7 |pages=675–683 |doi=10.1038/nnano.2017.50 |pmid=28416817 |bibcode=2017NatNa..12..675L |osti=1412777 |issn=1748-3395}}</ref> polarization (de)multiplexers,<ref>{{Cite journal |last1=Guo |first1=Rui |last2=Decker |first2=Manuel |last3=Setzpfandt |first3=Frank |last4=Gai |first4=Xin |last5=Choi |first5=Duk-Yong |last6=Kiselev |first6=Roman |last7=Chipouline |first7=Arkadi |last8=Staude |first8=Isabelle |last9=Pertsch |first9=Thomas |last10=Neshev |first10=Dragomir N. |last11=Kivshar |first11=Yuri S. |date=2017-07-07 |title=High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas |journal=Science Advances |language=en |volume=3 |issue=7 |pages=e1700007 |doi=10.1126/sciadv.1700007 |issn=2375-2548 |pmc=5517110 |pmid=28776027|bibcode=2017SciA....3E0007G }}</ref> structured light generation,<ref>{{Cite journal |last1=He |first1=Tiantian |last2=Meng |first2=Yuan |last3=Liu |first3=Zhoutian |last4=Hu |first4=Futai |last5=Wang |first5=Rui |last6=Li |first6=Dan |last7=Yan |first7=Ping |last8=Liu |first8=Qiang |last9=Gong |first9=Mali |last10=Xiao |first10=Qirong |date=2021-11-22 |title=Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge |url=https://opg.optica.org/oe/abstract.cfm?uri=oe-29-24-39406 |journal=Optics Express |volume=29 |issue=24 |pages=39406–39418 |doi=10.1364/OE.443186 |issn=1094-4087 |pmid=34809306 |bibcode=2021OExpr..2939406H |doi-access=free |accessdate=2023-02-22}}</ref> and on-chip bio-sensors<ref>{{Cite journal |last1=Flueckiger |first1=Jonas |last2=Schmidt |first2=Shon |last3=Donzella |first3=Valentina |last4=Sherwali |first4=Ahmed |last5=Ratner |first5=Daniel M. |last6=Chrostowski |first6=Lukas |last7=Cheung |first7=Karen C. |date=2016-07-11 |title=Sub-wavelength grating for enhanced ring resonator biosensor |url=https://opg.optica.org/oe/abstract.cfm?uri=oe-24-14-15672 |journal=Optics Express |language=EN |volume=24 |issue=14 |pages=15672–15686 |doi=10.1364/OE.24.015672 |pmid=27410840 |bibcode=2016OExpr..2415672F |issn=1094-4087|doi-access=free }}</ref> can be developed.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)