Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neural network (machine learning)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other=== In a [[Bayesian probability|Bayesian]] framework, a distribution over the set of allowed models is chosen to minimize the cost. [[Evolutionary methods]],<ref>{{cite conference |author1=de Rigo, D. |author2=Castelletti, A. |author3=Rizzoli, A. E. |author4=Soncini-Sessa, R. |author5=Weber, E. |date=January 2005 |title=A selective improvement technique for fastening Neuro-Dynamic Programming in Water Resources Network Management |conference=16th IFAC World Congress |publisher=IFAC |location=Prague, Czech Republic |conference-url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2005/Index.html |book-title=Proceedings of the 16th IFAC World Congress – IFAC-PapersOnLine |editor=Pavel Zítek |volume=16 |pages=7–12 |url=http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2005/Papers/Paper4269.html |access-date=30 December 2011 |doi=10.3182/20050703-6-CZ-1902.02172 |isbn=978-3-902661-75-3 |hdl=11311/255236 |hdl-access=free |archive-date=26 April 2012 |archive-url=https://web.archive.org/web/20120426012450/http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2005/Papers/Paper4269.html |url-status=live }}</ref> [[gene expression programming]],<ref>{{cite book |last=Ferreira |first=C. |year=2006 |contribution=Designing Neural Networks Using Gene Expression Programming |url=http://www.gene-expression-programming.com/webpapers/Ferreira-ASCT2006.pdf |editor=A. Abraham |editor2=B. de Baets |editor3=M. Köppen |editor4=B. Nickolay |title=Applied Soft Computing Technologies: The Challenge of Complexity |pages=517–536 |publisher=Springer-Verlag |access-date=8 October 2012 |archive-date=19 December 2013 |archive-url=https://web.archive.org/web/20131219022806/http://www.gene-expression-programming.com/webpapers/Ferreira-ASCT2006.pdf |url-status=live }}</ref> [[simulated annealing]],<ref>{{cite conference |author=Da, Y. |author2=Xiurun, G. |date=July 2005 |title=An improved PSO-based ANN with simulated annealing technique |volume=63 |pages=527–533 |editor=T. Villmann |book-title=New Aspects in Neurocomputing: 11th European Symposium on Artificial Neural Networks |url=http://www.dice.ucl.ac.be/esann/proceedings/electronicproceedings.htm |publisher=Elsevier |doi=10.1016/j.neucom.2004.07.002 |access-date=30 December 2011 |archive-date=25 April 2012 |archive-url=https://web.archive.org/web/20120425233611/http://www.dice.ucl.ac.be/esann/proceedings/electronicproceedings.htm |url-status=dead }}</ref> [[expectation–maximization algorithm|expectation–maximization]], [[non-parametric methods]] and [[particle swarm optimization]]<ref>{{cite conference |author=Wu, J. |author2=Chen, E. |date=May 2009 |title=A Novel Nonparametric Regression Ensemble for Rainfall Forecasting Using Particle Swarm Optimization Technique Coupled with Artificial Neural Network |series=Lecture Notes in Computer Science |volume=5553 |pages=49–58 |book-title=6th International Symposium on Neural Networks, ISNN 2009 |url=http://www2.mae.cuhk.edu.hk/~isnn2009/ |editor=Wang, H. |editor2=Shen, Y. |editor3=Huang, T. |editor4=Zeng, Z. |publisher=Springer |doi=10.1007/978-3-642-01513-7_6 |isbn=978-3-642-01215-0 |access-date=1 January 2012 |archive-date=31 December 2014 |archive-url=https://web.archive.org/web/20141231221755/http://www2.mae.cuhk.edu.hk/~isnn2009/ |url-status=dead }}</ref> are other learning algorithms. Convergent recursion is a learning algorithm for [[cerebellar model articulation controller]] (CMAC) neural networks.<ref name="Qin1">{{cite journal |author1=Ting Qin |author2=Zonghai Chen |author3=Haitao Zhang |author4=Sifu Li |author5=Wei Xiang |author6=Ming Li |url=http://www-control.eng.cam.ac.uk/Homepage/papers/cued_control_998.pdf |title=A learning algorithm of CMAC based on RLS |journal=Neural Processing Letters |volume=19 |issue=1 |date=2004 |pages=49–61 |doi=10.1023/B:NEPL.0000016847.18175.60 |s2cid=6233899 |access-date=30 January 2019 |archive-date=14 April 2021 |archive-url=https://web.archive.org/web/20210414103815/http://www-control.eng.cam.ac.uk/Homepage/papers/cued_control_998.pdf |url-status=live }}</ref><ref name="Qin2">{{cite journal |author1=Ting Qin |author2=Haitao Zhang |author3=Zonghai Chen |author4=Wei Xiang |url=http://www-control.eng.cam.ac.uk/Homepage/papers/cued_control_997.pdf |title=Continuous CMAC-QRLS and its systolic array |journal=Neural Processing Letters |volume=22 |issue=1 |date=2005 |pages=1–16 |doi=10.1007/s11063-004-2694-0 |s2cid=16095286 |access-date=30 January 2019 |archive-date=18 November 2018 |archive-url=https://web.archive.org/web/20181118122850/http://www-control.eng.cam.ac.uk/Homepage/papers/cued_control_997.pdf |url-status=live }}</ref> ==== Modes ==== {{No footnotes|date=August 2019|section}} Two modes of learning are available: stochastic and batch. In stochastic learning, each input creates a weight adjustment. In batch learning, weights are adjusted based on a batch of inputs, accumulating errors over the batch. Stochastic learning introduces "noise" into the process, using the local gradient calculated from one data point; this reduces the chance of the network getting stuck in local minima. However, batch learning typically yields a faster, more stable descent to a local minimum, since each update is performed in the direction of the batch's average error. A common compromise is to use "mini-batches", small batches with samples in each batch selected stochastically from the entire data set.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)