Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neutron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Health risks == Exposure to free neutrons can be hazardous, since the interaction of neutrons with molecules in the body can cause disruption to [[molecule]]s and [[atom]]s, and can also cause reactions that give rise to other forms of [[radiation]] (such as protons).<ref name="ENW"/> The normal precautions of radiation protection apply: Avoid exposure, stay as far from the source as possible, and keep exposure time to a minimum. But particular thought must be given to how to protect from neutron exposure. For other types of radiation, e.g., [[alpha particle]]s, [[beta particle]]s, or [[gamma ray]]s, material of a high atomic number and with high density makes for good shielding; frequently, [[lead]] is used. However, this approach will not work with neutrons, since the absorption of neutrons does not increase straightforwardly with atomic number, as it does with alpha, beta, and gamma radiation. Instead, one needs to look at the particular interactions neutrons have with matter (see the section on detection above). For example, [[hydrogen]]-rich materials are often used to shield against neutrons, since ordinary hydrogen both scatters and slows neutrons. This often means that simple concrete blocks or even paraffin-loaded plastic blocks afford better protection from neutrons than do far more dense materials. After slowing, neutrons may then be absorbed with an isotope that has high affinity for slow neutrons without causing secondary capture radiation, such as lithium-6. Hydrogen-rich [[water|ordinary water]] effects neutron absorption in [[nuclear fission]] reactors: Usually, neutrons are so strongly absorbed by normal water that fuel enrichment with a fissionable isotope is required. (The number of neutrons produced per fission depends primarily on the fission products. The average is roughly 2.5 to 3.0 and at least one, on average, must evade capture in order to sustain the [[nuclear chain reaction]].) The [[deuterium]] in [[heavy water]] has a very much lower absorption affinity for neutrons than does protium (normal light hydrogen). Deuterium is, therefore, used in [[CANDU]]-type reactors, in order to slow ([[neutron moderator|moderate]]) neutron velocity, to increase the probability of [[nuclear fission]] compared to [[neutron capture]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)