Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Operations on two independent normal variables ===== * If <math display=inline>X_1</math> and <math display=inline>X_2</math> are two [[independence (probability theory)|independent]] normal random variables, with means <math display=inline>\mu_1</math>, <math display=inline>\mu_2</math> and variances <math display=inline>\sigma_1^2</math>, <math display=inline>\sigma_2^2</math>, then their sum <math display=inline>X_1 + X_2</math> will also be normally distributed,<sup>[[sum of normally distributed random variables|[proof]]]</sup> with mean <math display=inline>\mu_1 + \mu_2</math> and variance <math display=inline>\sigma_1^2 + \sigma_2^2</math>. * In particular, if {{tmath|X}} and {{tmath|Y}} are independent normal deviates with zero mean and variance <math display=inline>\sigma^2</math>, then <math display=inline>X + Y</math> and <math display=inline>X - Y</math> are also independent and normally distributed, with zero mean and variance <math display=inline>2\sigma^2</math>. This is a special case of the [[polarization identity]].<ref>{{harvtxt |Bryc |1995 |p=27 }}</ref> * If <math display=inline>X_1</math>, <math display=inline>X_2</math> are two independent normal deviates with mean {{tmath|\mu}} and variance <math display=inline>\sigma^2</math>, and {{tmath|a}}, {{tmath|b}} are arbitrary real numbers, then the variable <math display=block> X_3 = \frac{aX_1 + bX_2 - (a+b)\mu}{\sqrt{a^2+b^2}} + \mu </math> is also normally distributed with mean {{tmath|\mu}} and variance <math display=inline>\sigma^2</math>. It follows that the normal distribution is [[stable distribution|stable]] (with exponent <math display=inline>\alpha=2</math>). * If <math display=inline>X_k \sim \mathcal N(m_k, \sigma_k^2)</math>, <math display=inline>k \in \{ 0, 1 \}</math> are normal distributions, then their normalized [[geometric mean]] <math display=inline>\frac{1}{\int_{\R^n} X_0^{\alpha}(x) X_1^{1 - \alpha}(x) \, \text{d}x} X_0^{\alpha} X_1^{1 - \alpha}</math> is a normal distribution <math display=inline>\mathcal N(m_{\alpha}, \sigma_{\alpha}^2)</math> with <math display=inline>m_{\alpha} = \frac{\alpha m_0 \sigma_1^2 + (1 - \alpha) m_1 \sigma_0^2}{\alpha \sigma_1^2 + (1 - \alpha) \sigma_0^2}</math> and <math display=inline>\sigma_{\alpha}^2 = \frac{\sigma_0^2 \sigma_1^2}{\alpha \sigma_1^2 + (1 - \alpha) \sigma_0^2}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)