Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pearson correlation coefficient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Adjusted correlation coefficient=== The sample correlation coefficient {{mvar|r}} is not an unbiased estimate of {{mvar|Ο}}. For data that follows a [[bivariate normal distribution]], the expectation {{math|E[''r'']}} for the sample correlation coefficient {{mvar|r}} of a normal bivariate is<ref>{{Cite journal | first = H. | last = Hotelling | year = 1953 | title = New Light on the Correlation Coefficient and its Transforms | journal = Journal of the Royal Statistical Society. Series B (Methodological) | volume = 15 | issue = 2 | pages = 193β232 | jstor = 2983768| doi = 10.1111/j.2517-6161.1953.tb00135.x }}</ref> :<math>\operatorname\mathbb{E}\left[r\right] = \rho - \frac{\rho \left(1 - \rho^2\right)}{2n} + \cdots, \quad</math> therefore {{mvar|r}} is a biased estimator of <math>\rho.</math> The unique minimum variance unbiased estimator {{math|''r''<sub>adj</sub>}} is given by<ref>{{Cite journal | first=Ingram | last=Olkin |author2=Pratt, John W. |date=March 1958 | title=Unbiased Estimation of Certain Correlation Coefficients | journal=The Annals of Mathematical Statistics | volume=29| issue=1 | pages=201β211 | jstor=2237306 | doi=10.1214/aoms/1177706717| doi-access=free }}.</ref> {{NumBlk|:|<math> r_\text{adj} = r \, \mathbf{_2F_1}\left(\frac{1}{2}, \frac{1}{2}; \frac{n - 1}{2}; 1 - r^2\right),</math>|{{EquationRef|1}}}} where: *<math>r, n</math> are defined as above, *<math>\mathbf{_2 F_1}(a, b; c; z)</math> is the [[hypergeometric function|Gaussian hypergeometric function]]. An approximately unbiased estimator {{math|''r''<sub>adj</sub>}} can be obtained{{citation needed|date=April 2012}} by truncating {{math|E[''r'']}} and solving this truncated equation: {{NumBlk|:|<math> r = \operatorname\mathbb{E}[r] \approx r_\text{adj} - \frac{r_\text{adj} \left(1 - r_\text{adj}^2\right)}{2n}.</math>|{{EquationRef|2}}}} An approximate solution{{citation needed|date=April 2012}} to equation ({{EquationNote|2}}) is {{NumBlk|:|<math> r_\text{adj} \approx r \left[1 + \frac{1 - r^2}{2n}\right],</math>|{{EquationRef|3}}}} where in ({{EquationNote|3}}) *<math>r, n</math> are defined as above, *{{math|''r''<sub>adj</sub>}} is a suboptimal estimator,{{citation needed|date=April 2012}}{{clarify|date=February 2015| reason=suboptimal in what sense?}} *{{math|''r''<sub>adj</sub>}} can also be obtained by maximizing log(''f''(''r'')), *{{math|''r''<sub>adj</sub>}} has minimum variance for large values of {{mvar|n}}, *{{math|''r''<sub>adj</sub>}} has a bias of order {{math|{{frac|1|(''n'' β 1)}}}}. Another proposed<ref name="RealCorBasic"/> adjusted correlation coefficient is{{citation needed|date=February 2015|reason=is this in a published article?}} :<math>r_\text{adj}=\sqrt{1-\frac{(1-r^2)(n-1)}{(n-2)}}.</math> {{math|''r''<sub>adj</sub> β ''r''}} for large values of {{mvar|n}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)