Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Phase-locked loop
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Phase domain model of APLL=== Consider the input of PLL <math>f_1(\theta_1(t))</math> and VCO output <math>f_2(\theta_2(t))</math> are high frequency signals. Then for any piecewise differentiable <math>2\pi</math>-periodic functions <math>f_1(\theta)</math> and <math>f_2(\theta)</math> there is a function <math>\varphi(\theta)</math> such that the output <math>G(t)</math> of Filter :<math> \left\{ \begin{array}{rcl} \dot x &= &Ax + b \varphi(\theta_1(t) - \theta_2(t)), \\ G(t) &= &c^{*}x, \end{array} \right. \quad x(0) = x_0, </math> in phase domain is asymptotically equal (the difference <math>G(t)- g(t)</math> is small with respect to the frequencies) to the output of the Filter in time domain model. <ref>{{cite journal | author = G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev | year = 2012 | title = Analytical method for computation of phase-detector characteristic | journal = IEEE Transactions on Circuits and Systems II: Express Briefs | volume = 59 | issue = 10 | pages = 633β637 |url=http://www.math.spbu.ru/user/nk/PDF/2012-IEEE-TCAS-Phase-detector-characteristic-computation-PLL.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.math.spbu.ru/user/nk/PDF/2012-IEEE-TCAS-Phase-detector-characteristic-computation-PLL.pdf |archive-date=2022-10-09 |url-status=live | last2 = Kuznetsov | last3 = Yuldashev | last4 = Yuldashev | doi = 10.1109/TCSII.2012.2213362 | s2cid = 2405056 }}</ref> <ref>{{cite book | author = N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, R.V. Yuldashev | year = 2011 | pages = 7β10 | doi = 10.1109/ISSCS.2011.5978639| last2 = Leonov | last3 = Yuldashev | last4 = Yuldashev | title = ISSCS 2011 - International Symposium on Signals, Circuits and Systems | chapter = Analytical methods for computation of phase-detector characteristics and PLL design | isbn = 978-1-61284-944-7 | s2cid = 30208667 | chapter-url = https://zenodo.org/record/889367 }}</ref> Here function <math>\varphi(\theta)</math> is a [[phase detector characteristic]]. Denote by <math>\theta_{\Delta}(t)</math> the phase difference :<math>\theta_{\Delta} = \theta_1(t) - \theta_2(t).</math> Then the following [[dynamical system]] describes PLL behavior :<math> \left\{ \begin{array}{rcl} \dot x &= &Ax + b \varphi(\theta_{\Delta}),\\ \dot \theta_{\Delta} &= & - g_v c^{*}x + \omega_{\Delta}. \\ \end{array} \right. \quad x(0) = x_0, \quad \theta_{\Delta}(0) = \theta_{1}(0) - \theta_2(0). </math> Here <math>\omega_{\Delta} = \omega_1 - \omega_\text{free}</math>; <math>\omega_1</math> is the frequency of a reference oscillator (we assume that <math>\omega_\text{free}</math> is constant). ====Example==== Consider sinusoidal signals :<math>f_1(\theta_1(t)) = A_1 \sin(\theta_1(t)), \quad f_2(\theta_2(t)) = A_2\cos(\theta_2(t))</math> and a simple one-pole [[RC circuit]] as a filter. The time-domain model takes the form :<math> \left\{ \begin{align} \dot x &= -\frac{1}{RC}x + \frac{1}{RC} A_1A_2\sin(\theta_1(t)) \cos(\theta_2(t)),\\[6pt] \dot \theta_2 &= g_v c^{*}x + \omega_\text{free} \end{align} \right. </math> PD characteristics for this signals is equal<ref>A. J. Viterbi, ''Principles of Coherent Communication'', McGraw-Hill, New York, 1966</ref> to :<math> \varphi(\theta_1 - \theta_2) = \frac{A_1 A_2}{2}\sin(\theta_1 - \theta_2) </math> Hence the phase domain model takes the form :<math> \left\{ \begin{align} \dot x &= -\frac{1}{RC}x + \frac{1}{RC}\frac{A_1 A_2}{2}\sin(\theta_{\Delta}),\\[6pt] \dot \theta_{\Delta} &= - g_v c^{*}x + \omega_{\Delta}. \end{align} \right. </math> This system of equations is equivalent to the equation of mathematical pendulum :<math> \begin{align} x & = \frac{\dot\theta_2 - \omega_2}{g_v c^*} = \frac{\omega_1 - \dot\theta_{\Delta} - \omega_2}{g_v c^*},\\[6pt] \dot x & = \frac{\ddot\theta_2}{g_v c^*},\\[6pt] \theta_1 & = \omega_1 t + \Psi,\\[6pt] \theta_{\Delta} & = \theta_1 -\theta_2,\\[6pt] \dot\theta_{\Delta} & = \dot\theta_1 - \dot\theta_2 = \omega_1 - \dot\theta_2,\\[6pt] & \frac{1}{g_v c^*}\ddot\theta_{\Delta} - \frac{1}{g_v c^* RC}\dot\theta_{\Delta} - \frac{A_1A_2}{2RC}\sin\theta_{\Delta} = \frac{\omega_2 - \omega_1}{g_v c^* RC}. \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)